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I studied brain connectivity analysis, with an emphasis on graph
based methods. I adapted a recent measure to compare connec-
tivity networks across subjects, based on graph signal processing
and optimal transport ideas. I extended it by introducing a new
way to leverage information from a whole cohort of subjects:
barycenter computation. I also studied another tool, graph cur-
vature, for which I proposed an adaptation to our context.
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Introduction
Analysing brain connectivity aims at studying how each region of
the brain relates to each other. In the last decades, the improve-
ment of non-invasive acquisition techniques has significantly
broadened our capability to capture fine details about either phys-
ical or functional connections in the brain.Their diffusion among
research centres has made connectivity analysis one of the spear-
heads of neuroscience studies.There is good hope that a better
understanding of the brain’s behaviour can come out of it.

I will present the different notions of connectivity in section
�, as well as their uses and the challenges arising from their
analysis.The aim of my work is to develop a new metric to compare
connectivity across subjects.

To this end, I will introduce the framework of graph signal
processing in section �. It has already found promising applications
in the wider field of complex network analysis. We adapted a
recently proposed metric to our setting, combining ideas from
graph signal processing and the theory of optimal transportation
(I introduce the tools of optimal transport as needed along the
document, but a more comprehensive introduction is provided in
appendix for the interested reader). I proposed an extension of
this metric, by exploiting a notion of barycenter which allows for
comparisons of cohorts instead of individuals.

I apply the methods that I adapt and devise to data acquired for
the study of depression.This data was collected in Rennes from
patients suffering from mood depressive disorder to investigate
the long term effects of the pathology on the brain as well as bio-
markers of clinical aspects of the disease, such as drug-resistance.
In this report, I will refer to patients for subjects suffering from
depression, and controls for the healthy group.

I then studied another notion, graph curvature, that provides a
new way to unveil the structural information of a graph. I describe
its foundations in section �, and I discuss how we could adapt
it in our context. I present a new idea for its computation using
a diffusion distance, as well as some preliminary results obtained
with the aforementioned data.

Most of the implementations that I produced during this in-
ternship are available online *. I have also had the opportunity to
contribute to the Python Optimal Transport library, that I used
for some of my implementations, and I have been part of a paper
submission to JMLR as a contributor of this library.

* https://github.com/little-nem/brain-connectivity-analysis

https://github.com/little-nem/brain-connectivity-analysis
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�. Connectivity
Studying human brain connectivity is all about understanding how
the brain processes information.The physiology of its microstruc-
ture — neurons interconnected via axons and communicating
through synaptic action potentials — is well understood at the
scale of individual cells. Yet the organ’s sophistication (tens of
billions of neurons, about 1014 synapses) prohibits its study at the
scale of individual neurons, especially when it comes to explaining
its complex behaviours.

We can nevertheless consider studying it as a whole system by
relying on the hypothesis that the brain’s organization at a macro-
scale (where atomic elements are populations of neurons instead
of individual cells) allows for an overall efficient processing of
information. Under this assumption, observing it at this macro-
level should still convey meaningful insights.

A landmark paper in this field is an article of Sporns,Tononi,
and Kötter�, in which they coin the term connectonomic for the
study of the physical organization of the brain. It has been shown
that the macro-scale is indeed a relevant scale. Similarly to other
complex-networks, such as social or biological networks, proper-
ties of information segregation (segmentation of the brain into
highly specialised areas) and integration (with a global communi-
cation scheme between those specialised areas), as well as small-
worldness or resilience have been described.This network is re-
ferred to as the human connectome.

Figure �: Harvard-Oxford Atlas,
showing how the brain can be seg-
mented into specialised areas.

�.�. Nature of Brain Connectivity
Brain connectivity analysis can be divided into two main subdo-
mains whose distinction lies in the nature of the studied network.
On the one hand, there is the study of functional connectivity,
which involves measuring the activity of the brain and under-
standing how different areas interact with each other.This can
especially provide insights about how the brain behaves while
performing some given cognitive task. On the other hand, struc-
tural connectivity can also be investigated.Here, we are heedful of



the physical organization of the brain, which we infer from the
observation of brain matter.

In both cases, we aim at defining a notion of connectivity in
the brain, that accounts for how much each region of the brain
interacts or is linked with each other. I will introduce in the
next paragraphs the main ideas behind data acquisition in both
contexts.

Functional connectivity

The main tool used to measure functional connectivity is Func-
tional Magnetic Resonance Imaging (fMRI).This is an imaging
technique introduced in the ����s aiming at measuring brain
activity. In its most widespread form, it exploits the fact that ac-
tive neurons need oxygen, and will thus be supplied by a flow of
oxygen-saturated blood.This exchange of oxygen induces pertur-
bations in the magnetic properties of the tissues, which we can
measure and localize both in space and time. An fMRI session
thus results in a collection of time series, each associated with
the absolute activity of a confined geographic region of the brain.
One of the possible interpretations of the data comes from cor-
relations between the measured activity of different parts of the
brain.This allows defining the functional connectivity of the brain,
describing a network in which parts of the brain with correlated
activities are deemed connected.

Structural connectivity

It is possible to unveil the physical structure of the brain through
Diffusion Magnetic Resonance Imaging. In order to establish a
map of the physical connections channels, this technique involves
measuring diffusion patterns of water molecules in the brain.
Those indirectly reveal the structure of brain fibers, since water
molecules are more likely to diffuse following those fibers.This
leads to the computation of a tractogram from which we can
derive a network-like structure of the brain, where physical fiber
connects the areas they go through.The pipeline to extract the
networks we will be working with is visually represented in figure
�.

�.�. Why Study Brain Connectivity?
Brain connectivity analysis has already provided some promising
results, showing that the instruments used to infer brain networks
from actual subjects and to capture fine details about the brain’s
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Figure �:Classical structural connectivity pipeline. A tractography is acquired through diffusion MRI.We use an
atlas (in our study the Freesurfer atlas, defining �� regions) to compute a connectivity matrix: each entry is the number
of fibers (obtained from the tractography) between two of the regions defined by the atlas.We can also compute
the associated connectivity graph, which is such that its adjacency matrix is the connectivity matrix. (Tractography
picture by Xavier Gigandet)
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organization. Here are some active research topics for which the
study of brain connectivity analysis has provided insights:

▶ Identify structures responsible for given cognitive functions
and establish a “map” of the human connectome. See for
example the Human Connectome Project (HCP)�.

▶ Identify alterations in the connectome that could be mark-
ers of pathologies. For instance modifications of connec-
tome topology have been observed in schizophrenia� or
depression�. Studies are now more focused on smaller bio-
markers, e.g. drug-resistance, pathology phenotypes

▶ Record changes in the connectome along time, caused by
ageing, a pathology, or a treatment. For instance, Dosen-
bach et al.� uses support vector regressions to compute a
“maturation index” from the strength of connections in
the connectome, which can be used to predict the age of
a subject. More recently, Wen et al.� used deep learning
approaches to achieve a similar goal.

▶ Perform subject identification using connectivity maps as
fingerprints, as is done in Venkatesh, Jaja, and Pessoa� using
nearest-neighbours predictors in a geodesic subspace of
matrices.

▶ Map functional and structural connectivity, i.e. understand
how both of them actually relate and if we can infer one
notion of connectivity from the other. See for example
Hosseini and Kesler� or Meier et al.�

A key element of those analyses is the ability to compare con-
nectivity networks between subjects or across time (in the case
of a longitudinal study), and explicit the meaningful differences
between connectomes.This can help to account for individual
variability among subjects, reveal differences between two cohorts,
etc.
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Figure �:Functional connectivity
matrices can be shown to live in
conic submanifold of R𝑛×𝑛. Dis-
tances can be computed by taking
this structure into account, as in
Venkatesh, Jaja, and Pessoa�.
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�.�. State of the Art of Connectome Comparison
The representation of connectomes through their connectivity
matrix is often encountered in articles because it is especially
efficient for visual comparison of connectomes: Alper et al.��
shows that information is harder to extract visually from con-
nectivity graph representations.Multiple studies have developed
principles to compare connectivity matrices. Standard matricial
norms have been used, such as the 𝑙2 difference norm�� or the
Pearson correlation between vectorized matrices��. More refined
approaches exploit algebraic properties of connectivity maps to
derive relevant notions of distance. For instance, in Venkatesh,
Jaja, and Pessoa�, functional connectivity maps are proved to live
in a submanifold of R𝑛×𝑛 in which a geodesic distance can be de-
fined and provides more reliable results than distances defined in
the full matrix space.The ideas behind this approach are summed
up in figure �.

Exploiting the duality between a connectivity matrix and the
associated network, a trend in connectivity analysis is to embrace
complex network inspired measures. This often involves com-
puting several topological properties of the graph, ranging from
individual node strengths to clustering coefficients as well as av-
erage shortest path lengths. An in-depth review of those markers
can be found in Rubinov and Sporns��, and I present some of
them in figure �.Most of those measures can find meaningful in-
terpretations in terms of local network resilience, modularity, etc.
They take part for example to the analysis conducted in Coloigner
et al.� or Mheich,Wendling, and Hassan�� where they are used
to identify differences between cohorts.

node degree (number of neighbours)
node strength (sum of adjacent edges weights)

clustering coefficient
fraction of triangles in

the node’s neighbourhood

shortest paths

betweenness centrality
fraction of all pairwise shortest
paths going through a node

Figure �: Some topologic markers
used in complex network analysis.

Yet, those measures are not always fully satisfying. First of all,
they often only depend on the local topology of the graph and fail
to highlight more global properties. Some of those also put too
much emphasis on the combinatorial structure of the network
while disregarding the weights of the edges. It is shown in Xiang
et al.�� that leveraging the information of the weights of edges
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could increase the reliability of complex network measures.
This is the issue that we wanted to address in this work.We

tried to devise new metrics and principles to meaningfully com-
pare the global structure of connectivity graphs.

�. Graph Signal Processing and Optimal
Transport

Signal processing is usually about the study of temporal signals, or
time series: sequences of data points that are related through tem-
poral dependencies. Each point follows the point measured just
before it and is followed by the point measured right after.Graph
signal processing is an extension of this framework, in which rela-
tions between data points are not limited to be temporal but are
indeed more general. Interestingly enough, the tools introduced
in this framework can provide deep insights on structural proper-
ties of graphs as well as new tools for data-processing in general.
One can see for instance Ricaud et al.�� for an introduction to
the implications of this topic.

�.�. Graph Signals
Given a graph 𝒢 (a set 𝑉 of nodes and a set 𝐸 of — possibly
weighted — edges between those nodes), a signal 𝑠 on𝒢 is simply
a function that maps each node 𝑣 to a value 𝑠(𝑣).

It is interesting to see that a time series is a particular graph
signal, for which the support graph is a path where each node
corresponds to a time sample.This is illustrated in figure �.
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Figure �:A time serie and its graph counterpart.The value of the signal on the graph is represented using colors on
nodes, yellow being a low value, and red a high one

DerivingTools for the Analysis of Signals on Graphs

It will be convenient to adopt a matricial perspective on the
different objects that we manipulate.We can see a set of nodes
𝑉 = {𝑣1,… , 𝑣𝑛} as the standard basis of the space R𝑛. A signal



on a graph can thus be expressed as a vector 𝑠 = (𝑠1 … 𝑠𝑛)
⊺ of

R𝑛, such that its coordinates are the value of the signal at each
node. The adjacency matrix 𝐴 of the graph is the matrix such
that 𝐴𝑖,𝑗 = 1 if 𝑖 and 𝑗 are linked by an edge.The set of edges
𝐸 = {𝑒1,… , 𝑒𝑝} can also be seen as the standard basis of R𝑝.
Those objects are illustrated in figure �.
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Figure �:Graph with a signal de-
fined on it (represented by the color
on the nodes, red for a high value
and yellow for a low one), its ad-
jacency matrix 𝐴, and the signal
vector 𝑠.

At this point, we will suppose that the graph is oriented,which
means that each edge (𝑖, 𝑗) leaves a vertex (𝑖) to enter the other
(𝑗). We will see later that the orientation does not matter for
what we are interested in, but it eases the intuition behind the
next objects we will introduce. To account for this orientation,
we introduce the incidence matrix of the graph. It is the matrix
of the application from R𝑝 to R𝑛 expressed in the bases 𝐸 and 𝑉
that maps 𝑒𝑡 to 𝑠𝑗 − 𝑠𝑖 when 𝑒𝑡 is the edge (𝑠𝑖, 𝑠𝑗).

To follow the analogy with classical signal processing, we want
to derive tools to describe and study the properties of a graph
signal.A first notion that we can express is the notion of variation
of a signal among its domain.The gradient of a signal over an
edge 𝑒 = (𝑖, 𝑗) is defined as the difference of the signal values
at the extremities of the edge, following the orientation of the
graph.

grad
|
|𝑒 (𝑠) = 𝑠(𝑗) − 𝑠(𝑖) (�)

We naturally extend this to the linear mapping from R𝑛 to R𝑝

that maps a signal to the vector of gradients along each edge.We
denote ∇ its matrix expressed in the bases 𝑉 and 𝐸, such that

∇ ⋅ 𝑠 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

grad
|
|𝑒1 (𝑠)

grad
|
|𝑒2 (𝑠)
⋮

grad
|
|𝑒𝑝 (𝑠)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is worth noting that this operator ∇ is nothing but the
transposed incidence matrix of the graph.

Now that we have defined the gradient of the signal along its
edges, we can express a notion of local variation at a node.The



tool that we derive is the graph Laplacian.To pursue the analogy
with classical vector calculus, the Laplacian of the signal at a
node 𝑣 is the divergence of the gradient through this point. Said
differently, in our setting, it is the “oriented sum”of the variations
of the signal from this point toward each direction. Once again,
the graph’s orientation is followed.

laplacian
|
|𝑣 (𝑠) = div|𝑣 (∇ ⋅ 𝑠) =

∑

𝑒 enter 𝑣
grad

|
|𝑒 (𝑠) −

∑

𝑒 exit 𝑣
grad

|
|𝑒 (𝑠)

(�)
This nodewise operation extends to a linear mapping from

R𝑛 (the signal) to R𝑛 (the Laplacian of the signal at each node
of the graph). From equation (�), we see that computing the
divergence of the gradient over the edges is equivalent to applying
the incidence matrix to the gradient field ∇ ⋅ 𝑠,This incidence
matrix equals ∇⊺. This is consistent with the classical calculus
analogy where the divergence operator is the transpose of the
gradient operator.We can thus express a Laplacian operator 𝐿 of
the form 𝐿 = ∇⊺∇ such that

𝐿 ⋅ 𝑠 = (∇⊺∇) ⋅ 𝑠 = ∇⊺(∇ ⋅ 𝑠) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

laplacian
|
|𝑣1 (𝑠)

laplacian
|
|𝑣2 (𝑠)

⋮
laplacian

|
|𝑣𝑛 (𝑠)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence, the effect of the orientation of the graph cancels out
because of the factorisation ∇⊺∇ and plays no role in the defi-
nition of the Laplacian operator. 𝐿 can thus also be defined for
non-oriented graphs: injecting equation (�) into equation (�), it
follows that 𝐿 satisfies the following relations, independent of
orientation:

(𝐿 ⋅ 𝑠)|𝑣𝑖 =
∑

𝑣𝑗 connected to 𝑣𝑖

(
𝑠(𝑖) − 𝑠(𝑗)

)
𝐿 = 𝐷 − 𝐴

Where 𝐷 is the diagonal matrix whose entries are the degree
of each node, and 𝐴 is the aforementioned adjacency matrix.
This result shows that the Laplacian matrix encodes structural
properties of the graph. It also fully characterizes the graph, up
to a reordering of its nodes (indeed those definitions initially
depended upon the choice of the standard basis 𝑉 = {𝑣1,… , 𝑣𝑛}
of R𝑛).

We can provide a similar formulation for weighted graphs.
We will just weight the gradient of the signal along an edge by



the weight of this edge. Intuitively this expresses that two nodes
linked together by a strong edge are heavily related, and thus
a variation of the signal between those nodes should be more
significant than the same variation along a weaker edge. The
gradient operator is therefore expressed as 𝑊 × ∇ and we can
derive the following similar formula for the weighted Laplacian
matrix, where 𝐷 is the diagonal matrix of the weighted degrees.

𝐿 = ∇⊺ (𝑊∇) = 𝐷 −𝑊 (�)

Spectral Analysis of the Graph Laplacian

We have derived an operator that solely depends on the structure
of the graph, and quantifies the variation of a signal on this graph.
Indeed, given a signal 𝑠, the Laplacian matrix can be used to
express the Dirichlet energy 𝐸(𝑠) of the signal:

𝐸(𝑠) def=
1
2

∑

𝑢,𝑣
𝑤𝑢,𝑣 (𝑠(𝑢) − 𝑠(𝑣))2 = 𝑠⊺𝐿𝑠

The Dirichlet energy quantifies how much the signal varies
along each edge, taking into account the weight of each edge (i.e.
how strongly the two nodes are related). A signal whose energy
is low can be seen as a signal whose variations are smooth with
respect to the structure given by the edges: a strong connection
between two nodes leads to a similar value of the signal on both
extremities. In the other hand, high energy, means that some
strongly connected nodes have a significantly different value,
hence some notion of abrupt variation.

Equation (�) also shows that the Laplacian matrix is real and
symmetric, and thus admits a nice diagonal decomposition in a
basis of orthogonal eigenvectors.

𝐿 = 𝜒Λ𝜒⊺

Where Λ = Diag(𝜆1,… , 𝜆𝑛) is the diagonal matrix whose
entries are the eigenvalues of 𝐿 and 𝜒 is the matrix of the cor-
responding eigenvector basis (𝜈1,… , 𝜈𝑛). We will assume that
𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛. Observe that since 𝐿 can also be written
as 𝐿 = ∇⊺∇, it is a semi-positive matrix, thus its eigenvalues are
non-negative. Also note that since each row of 𝐿 sums to 0 (see
equation (�)), 0 is an eigenvalue of 𝐿, and thus we have 𝜆1 = 0.

Because the 𝜈𝑖’s are vectors of R𝑛, they correspond to signals
on the graph.We will call them the (eigen-)modes of the graph.
The analogy with the notion of mode that we already knew in
physics (those of a vibrating membrane for example) can be made



because both are solutions of a Dirichlet problem 𝐿𝑥 = 𝜆𝑥.Using
the eigenvector property of 𝜈𝑖, we have:

𝐸(𝜈𝑖) = 𝜈⊺𝑖 𝐿𝜈𝑖 = 𝜈⊺𝑖 (𝜆𝑖𝜈𝑖) = 𝜆𝑖‖𝜈𝑖‖2

Therefore, the energy of a normalized eigenvector only de-
pends on the associated eigenvalue.This gives an intuitive idea
behind the ordering of the eigenvalues: low eigenvalues corre-
spond to modes with small energy (and thus smooth variations:
the analogue of low frequency signals for time series), while high
eigenvalues lead to mode with high energy (and thus high varia-
tions — high frequency).This phenomenon can be observed in
figure �.

λ1

λ2

λ3

λ15

Figure �: A graph, and some of
the eigenvectors of its laplacian ma-
trix.Note that the signal associated
with 𝜆1 (the zero eigenvalue) is the
constant signal across the graph.
Also observe that higher eigenval-
ues are associated with signal pre-
senting more abrupt variations.

Since we have a basis of signals, we can decompose any signal
𝑠 into his representation ℎ on the basis represented by 𝜒, such
that

𝑠 = 𝜒ℎ = ℎ1

𝜈1

+ℎ2

𝜈2

+ℎ3

𝜈3

+⋯+ℎ15

𝜈15

This is what is referred to as the Fourier Transform for graphs
signals.We can thus decompose any graph signal into a sum of
the modes of the graph, and the coefficients of this decomposi-
tion contain the spectral information of the signal. Because 𝜒 is
orthogonal, this decomposition can be obtained through

ℎ = 𝜒⊺𝑠

�.�. OptimalTransport of Smooth Graph Signals
Optimal transportation theory provides tools to endow probability
spaces with a metric.Among those tools are theWasserstein distance
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between probability measures (see the appendix for an in-depth
introduction).Up to now,we have only been working with graphs,
that are discrete objects but no distributions. An idea introduced
in Dong et al.�� is that a graph comes with a family of signals
that are somehow natural on it: smooth signals. The core idea
of the paper is that we can define a meaningful distribution of
such smooth signals over the graph, and exploit the power of
optimal transport tools on them.With the framework that we
have introduced in the previous section,this corresponds to signals
whose spectral mass is mainly concentrated around modes of low
frequency.

The authors describe the following distribution of smooth sig-
nals over the graph. A random smooth signal should be such
that the coefficient ℎ𝑖 associated to the eigenvector of 𝜈𝑖 in its
spectral decomposition follows 𝒩

(
0, 1

𝜆𝑖

)
. Said differently: the

higher the eigenvalue of a mode, the more its spectral mass will
be squeezed toward 0. Such a distribution will thus favour the
low frequency modes and naturally lead to a class of smooth
signals over the graph.The vector ℎ thus follows a multivariate
distribution 𝒩

(
0,Λ−1

)
. Using the fact that a signal 𝑠 and its

decomposition ℎ are linked through 𝑠 = 𝜒ℎ, this gives a distribu-
tion of signals that can be expressed as the following multivariate
distribution:

𝒩
(
0, 𝜒Λ−1𝜒⊺⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐿−1

)

For correctness sake, we should mention that the Laplacian
matrix is not truly invertible (recall that 0 is one of their eigen-
values), and thus the inverses mentioned earlier should rather be
written as 𝐿†, where ⋅† denotes the pseudo-inverse of the matrix.

The authors of Maretic et al.�� use this link between a graph
and a distribution of signals to use the framework of optimal
transport. Since the objects manipulated have gone from the
space of graphs to a space of distributions, they propose to use
an optimal transport measure (the Wasserstein distance) to the
problem of comparing two graphs.This idea is summed up in
figure �.

We thus need to compute an optimal transport distance be-
tween those measures. One of the drawbacks of today’s optimal
transport theory is its lack of tractable numerical schemes, espe-
cially for high dimensional distributions. Fortunately, the distri-
butions considered here (multivariate Gaussians) enjoy quite a
few good properties and Maretic et al.�� use an explicit formu-
lation for the 2-Wasserstein distance between two multivariate
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Figure �:Using the optimal trans-
port framework to compare two
graphs: process used in Maretic et
al.��
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Gaussian distributions (also referred to as the Bures-Wasserstein
distance��): if 𝜈1 = 𝒩(0, Σ1) and 𝜈2 = 𝒩(0, Σ2).

𝑊2
2 (𝜈1, 𝜈2) = trΣ1 + trΣ2 − 2 tr

√
Σ1/2
1 Σ2Σ1/2

1

The square roots are well defined in our case since the Laplacian
matrix — and thus their (pseudo-)inverses — are positive semi-
definite.

Note that for this approach to make sense, the graphs must
have the same number of nodes and they also should be aligned.
This means that the ordering of the nodes of each graph should
be meaningfully comparable in both graphs: for instance if one
was to compare some networks associated to the economy of two
countries, the capital of each country should correspond to the
same node 𝑣𝑖 in both graphs.The article Maretic et al.�� dwells
upon the issue of finding a good graph alignment, but we are not
concerned by this since the networks that we will compare are
issued using known brain atlases and we have thus enough prior
knowledge of the networks to align them beforehand.

�.�. Wasserstein Distance on our Connectivity
Matrices

At this point, we decided to try using the �-Wasserstein distance
on the dataset at our disposal. We wanted to observe the dif-
ferences between controls and patients. A latent idea was that
we could be able to classify a new subject from its connectome
using the developed technique.This was backed up by studies
having brought out significative connectivity difference between
the control and the depressive cohorts. I thus implemented the
distance introduced in Maretic et al.�� that I discussed in the pre-
vious section.The hope was that the known structural differences�
between the two cohorts would be captured by the transportation
distance between graphs.

The approach I first chose is to compute a pairwise distance
between each subject and each control. I aggregated those distance
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Figure ��: Geometric intuition
of why to use barycenters in our
study. Even though all subjects are
roughly equidistant and thus hard
to distinguish simply by computing
the pairwise distances (in some ar-
bitrary metric space), the controls
(blue) are closer to their barycen-
ter than the patient (red), and com-
puting individual distances to the
barycenter allows to classify more
reliably.

into an average distance to the control cohort for each subject.Our
intuition was that, because of the connectivity change in specific
networks related to the disease, the average distance between a
control and the cohort of other controls would be smaller than
the average distance between a patient and the cohort of control.
In figure �, I represented the distribution of average distances to
the control group from either the control group or the patient
group.We expected to see a shift in the distributions, reflecting
the greater homogeneity inside the control group.
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Figure �: Pure Wasserstein dis-
tance to controls, the spike at the
right corresponds to distances that
were clipped to 2.5 ⋅ 10−2, in order
to keep a readable scale.

Although it captures the greater homogeneity among controls,
the distance does not really discriminates between both groups.
Even though we endorse the matrix space with a meaningful
geometry, its high-dimensionality might still make it hard to
analyze, the same way k-Nearest-Neighbours classifiers tend to
struggle with high dimensionality data.

�.�. Barycenters of Gaussian distributions
An idea that I proposed to enhance results is to have a notion
of barycenters of connectomes.This approach emerges naturally
since we are willing to compare cohorts: being able to compute
a mean connectome of a control group to which we compare
individual subjects instead of averaging individual distances to
subjects might provide better results than the previous approach.
A geometric intuition of why this could enhance our results is
provided in figure ��.

The notion of barycenter (or centroid) is well defined in eu-
clidean spaces. It finds a natural generalization in metric spaces
with the formulation of the Fréchet mean.This gives, for instance,
a natural way to define the geometric mean as a centroid: via the
Fréchet mean for the hyperbolic distance.

As detailed earlier,we have embedded connectivity graphs into
a probability space endowed with the Wasserstein metric.The
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formulation of the Fréchet mean 𝜇̄ of a collection of measures
(𝜇1,… , 𝜇𝑘) in this space (which we will also call a Wasserstein
barycenter) is as follows:

𝜇̄ = argmin
𝜇

𝑘∑

𝑖=1

𝜆𝑖𝑊2
2 (𝜇, 𝜇𝑖) where (𝜆1,… , 𝜆𝑘) are weights

Computation of such barycenters in the theory of optimal
transport often relies on samples of the distributions. See for
instance Peyré, Cuturi, et al.�� for a review of numerical schemes
behind this optimisation problem. Unfortunately, our distribu-
tions of interest are not described by samples but rather by their
covariance matrix, which is convenient because sampling such
high dimensionality distributions is expensive. Fortunately, mul-
tivariate Gaussians are easy to work with, and we will be able to
use results of Álvarez-Esteban et al.�� that gives an interesting
and computationally fecund characterization of the Wasserstein
barycenter, which happens to be the fixed point of a certain ap-
plication:

𝜇̄ = 𝐺 (𝜇̄)

𝐺 is defined as the function mapping a distribution 𝜇 to the
distribution followed by

∑𝑘
𝑖=1 𝜆𝑖𝑇𝑖(𝑋) where 𝑋 ∼ 𝜇 and 𝑇𝑖 is the

transport map sending 𝜇 to 𝜇𝑖. One can get the intuition of this
result as follows: the barycenter is the measure that is stabilized
when geodesically moved toward each of the 𝜇𝑖. Note that the
subtlety here is that the distributions followed by each of the
𝑇𝑖(𝑋) are not independent of each other because the one and
only random variable𝑋 is transported in each term.We will apply
this result to our multivariate normal distributions.

A known result is the expression of 𝑇𝑖 when we transport a
Gaussian toward another Gaussian distribution, see e.g. Bhatia,
Jain, and Lim��. If 𝜇 = 𝒩(0, Σ) and 𝜈𝑖 = 𝒩(0, Σ𝑖),

𝑇𝑖(𝑥) = Σ−1/2
(√

Σ1/2Σ𝑖Σ1/2
)
Σ−1/2𝑥 (�)

We denote 𝐴𝑖 the matrix in front of 𝑥 in the above expression.
Applying the map𝐺 to the Gaussian measure 𝜇 = 𝒩(0, Σ)when
each 𝜈𝑖 is of the form𝒩(0,Σ𝑖) yields that𝐺(𝜇) is the distribution
of a sum of affine transformations of Gaussians random variables,
whose mean is 0, and whose covariance matrix can be expressed
as:
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(
𝜆1𝐴1 ⋯ 𝜆𝑘𝐴𝑘

)
⎛
⎜⎜⎜⎜⎜⎜⎝
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⎞
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(
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√
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𝜆𝑖

√
Σ1/2Σ𝑖Σ1/2

⎞
⎟⎟⎟⎟⎠

2

Σ−1/2

The authors of�� show that — under some mild hypothesis —
this function 𝐺 gives a natural iteration scheme 𝜇𝑛+1 = 𝐺(𝜇𝑛)
that converges to the unique fixed point of 𝐺, which is the de-
sired barycenter. If we denote 𝜇(𝑛) = 𝒩

(
0,Σ(𝑛)

)
, it provides the

following iteration scheme that converges toward the covariance
of the barycenter:

Σ(𝑛+1) = Σ(𝑛)−1/2
⎛
⎜⎜⎜⎜⎝

𝑘∑

𝑖=1

𝜆𝑖

√
Σ(𝑛)1/2Σ𝑖Σ(𝑛)1/2

⎞
⎟⎟⎟⎟⎠

2

Σ(𝑛)−1/2

Figure �� shows the result of this iterative scheme to compute
the barycenter of four two-dimensional Gaussians.

Figure ��:Barycenter of �D Gaus-
sians computed using the itera-
tive scheme.The barycenter is the
darkest distribution, in the middle.
Observe that the barycenter have
benefited from characteristics of
all measures, while avoiding over-
representation of individual vari-
ability, such as the squeezing of the
green distribution.

�.�. Barycenters for Connectivity Analysis
The idea at this point was that we could continue to compare
connectomes in the probability space introduced earlier, but in-
stead of individually comparing subjects to each control, we can
now start by computing a barycenter of the group of interest
and then compare each subject to this barycenter. Not only this
increases the speed of comparing a new subject to the control
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cohort since only one distance needs to be computed, but this
also leverages that we are comparing a subject to the relevant
features common across a whole cohort, thus avoiding too much
emphasis put on individual variability. In figure �� I show the
barycenter computed from the full controls cohort.

To assess the utility of barycenter, I devised the experiment
shown in figure ��. I repeatedly split the control cohort into two,
used one part of the controls to compute a barycenter, and com-
puted the distance between the other controls and the patients
to the barycenter.

⋯

⋯
barycenter

control cohort

Figure ��: Barycenter computa-
tion. Note that we compute the
barycenter in a probability space,
and that the shown connectivity
matrix only approximately corre-
sponds to a true network.

Controls
Random subsample

of 𝑘 controls

1
𝑛
∑

⋯

Patients Remaining
controls Wasserstein distance

to barycenter

𝑊2
2 ( ⋅ , )

Distance to barycenter

Patients
Controls

Distance to barycenter

Patients
Controls

⋮

repeat over
multiple random

subsampling
of controls

Distance to barycenter

Patients
Controls

Figure ��:Barycenter folding tests.
Note that the 1

𝑛
∑

arrow denotes
the computation of the Wasser-
stein barycenter.

Once again, the results (see figure ��) were not significantly
more satisfying than those obtained through the first method.
The expected shift in the distributions, although existing because
of the greater homogeneity in the control group, is not significant,
and only a handful of patients are indeed discriminated by those
distance-based methods.

I conducted further experiments, either by increasing the spar-
sity of the networks, or by splitting the connectome into hemi-
spheric subnetworks to exploit some properties of the distance
described in Maretic et al.��, but none of those yielded better
results.
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Figure ��: Distances to the con-
trol barycenter aggregated from
the folds of the experiment pre-
sented in figure ��.
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�. Graph Curvature
I investigated another marker that could be used to capture prop-
erties of the network.There is often a duality betweenmesh process-
ing and graph analysis. Indeed, the tools introduced in section �
in the context of graph signal processing, such as the graph Lapla-
cian, are also defined and used in mesh processing.The intuition
behind this is that shapes can often be summarized through their
combinatorial structure, and thus through an adjacency graph.
Ollivier-Ricci curvature is another of those common tools, whose
intuition first come from geometric objects, but can provide in-
sight on the structure of the graph.This tool starts to be used for
complex network analysis, such as in Ni et al.�� or Sia, Jonckheere,
and Bogdan��, and even in the context of neurosciences like in
Farooq et al.�� I will introduce this tool, the intuition backing
it as well as its theoretical foundations. I will also present novel
ideas to adapt this tool in the context of our study.

�.�. From Riemannian manifolds to networks
Curvature is usually defined on geometric objects, as we will
first see. I will then present how a notion of curvature can be
computed on combinatorial objects (graphs in our context), and
convey information on the structure of the object.

Ricci curvature on manifolds

Amanifold can be roughly defined as a space that locally coincides
with a Euclidean space. More precisely, a 𝑛-manifold is a set
ℳ ⊂ R𝑑 such that for each point 𝑥 of ℳ, there exist an affine
subspace of R𝑑 of dimension 𝑛 that coincides with 𝑥 at first order.
This space is called the tangent space of ℳ at 𝑥. An example of
such set is a sphere embedded in R3. Its local similarity with a



Euclidean space is responsible for the phenomenon that makes
the Earth hardly distinguishable from a plane at first order, at
the human scale.

Thinking about curvature is trying to quantify how much the
manifold differs from a Euclidean space at second order. Several
notions of curvature coexist. I will briefly introduce the sectional
curvature and the Ricci curvature, both defined in the setting of
Riemannian manifolds.

A Riemannian manifold is a manifold ℳ equipped with a
Riemannian metric.That is for every point 𝑥 in ℳ, there exist an
inner product defined in the tangent space of ℳ at 𝑥, inducing a
norm in this tangent space. A canonical such Riemannian metric
is the restriction of the Euclidean inner product to the tangent
space.This is illustrated in figure �� for a sphere.

x
e1 e2

Figure ��:The sphere 𝒮 embed-
ded in R3 seen as a two dimen-
sional Riemannian manifold.The
tangent space of𝒮 at point 𝑥 is the
affine space represented, and an or-
thogonal basis (𝑒1, 𝑒2) of this space
can be used to define the canonical
inner product inside this tangent
space.

Given a smooth curve 𝛾 on ℳ (𝑡 ↦ 𝛾(𝑡) ∈ ℳ), its derivative
d𝛾
d𝑡 (𝑡) is a vector of the tangent space of ℳ at 𝛾(𝑡), whose length
can thus be defined thanks to the norm induced on the tangent
space. By integration along the curve, we can therefore define the
length of the curve.The geodesic distance between two points of
ℳ is the infimum of the length of a smooth curve joining the
two said points.This induces a metric 𝑑 on the manifold, such
that 𝑑(𝑥, 𝑦) is the geodesic distance between those two points.

Using some geometrical intuition, we can easily define the par-
allel transport of a tangent vector along a curve.This is illustrated
in figure �� where we transport the tangent vector 𝑤𝑥 from 𝑥 to 𝑦
along 𝑣, giving the vector𝑤𝑦 tangent to the manifold at 𝑦.This can
be used to assess the local discrepancy between a manifold and
a Euclidean space. Indeed, in a pure Euclidean setting, parallel
vectors are actually rigorously parallel, in the sense that following
both vectors does not result in either convergence or divergence.
In a Riemannian manifold, parallel vectors are defined to be as
parallel as the space allows it, which can result in convergence or
divergence when following the geodesic they define.

More formally, using the notations from figure ��, the sec-
tional curvature in direction 𝑤𝑥 along 𝑣 (denoted 𝐾(𝑣,𝑤𝑥)) is
defined as a second order coefficient in the asymptotic behaviour
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Figure ��:Parallel transport of 𝑤𝑥
from 𝑥 to 𝑦 following 𝑣.The dotted
lines represent the constant-speed
geodesic starting from either 𝑥 or 𝑦
with initial speed given by the tan-
gent vectors 𝑤𝑥 and 𝑤𝑦, and run-
ning for a time 𝜖.The sectional cur-
vature at 𝑥 in direction 𝑤 along 𝑣
(denoted 𝐾(𝑣,𝑤𝑥)) will be defined
through the behaviour of 𝑑 when
𝜖 → 0 and 𝛿 → 0.
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of 𝑑
(
exp𝑥 𝜖𝑤𝑥, exp𝑦 𝜖𝑤𝑦

)
:

𝑑
(
exp𝑥 𝜖𝑤𝑥, exp𝑦 𝜖𝑤𝑦

)
=

𝜖,𝛿→0
𝛿
(
1 −

𝜖2

2
𝐾(𝑣, 𝑤𝑥) + 𝒪

(
𝛿 + 1)𝜖2

))

This highlights that a positive sectional curvature leads to con-
verging parallels (like on the above sphere), while a negative
curvature leads to diverging parallels.This definition is dependant
on both the direction 𝑣 along which we transport and on the
vector 𝑤𝑥 that is transported. Ricci curvature is defined as the
average of sectional curvature over all the directions 𝑤𝑥 in the
tangent space at 𝑥.

This can also be rephrased in term of asymptotic behaviour,
in similar fashion to the definition of 𝐾. If we define ̄𝑑 to be the
average of the distances 𝑑 depicted in figure �� for 𝑤𝑥 describing
the unit circle in the tangent space, we have

̄𝑑 =
𝜖,𝛿→0

𝛿
(
1 −

𝜖2

2𝑁
Ric(𝑣) + 𝒪

(
(𝛿 + 1)𝜖2

))

Ollivier-Ricci Curvature in Metric Space

This previous definition of Ricci curvature is only valid in Rie-
mannian manifolds.We would like to extend it to general metric
spaces, such as graphs, while keeping the intuitions behind it. I
will detail the approach formulated by Ollivier��. His approach
finds its roots in theorems, formulated by Lott and Villani, as
well as Sturm, linking optimal transport distances, Boltzmann
entropy (denoted𝐻 in what follows) and Ricci curvature on (still)
Riemannian manifolds.

To understand the relationship between those notions, let us
look at the following theorem, which has a very intuitive inter-
pretation. If 𝑘 is a lower bound for the Ricci curvature on the
manifold ℳ,𝜇0 and 𝜇1 are measures defined on 𝑀, and (𝜇𝑡)𝑡∈]0,1[
is the interpolation between those two measures (in the sense of
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the Wasserstein 𝑊2 metric, see the appendix for more details),
we have��

𝐻(𝜇 1
2
) ≥

1
2
(
𝐻(𝜇0) + 𝐻(𝜇1)

)
+
𝑘
8
𝑊2

2(𝜇0, 𝜇1) (�)

If we remind, from information theory, that entropy basically
accounts for the spread of the measure (entropy increases as the
measure gets closer to being uniform), this theorem is actually
saying that measures defined on a manifold tend to spread under
positive curvature, while they are able to get shrunk while on
negatively curved spaces.This can be observed in figure ��.

Figure ��: Dilatation (left) and
contraction (right) property of the
entropy under positive (left) and
negative (right) curvature. Blue ar-
eas representmeasures of finite sup-
port on the manifold.The red mea-
sure in the center represents (both
in the left and right cases) the inter-
polation (in the Wasserstein sense)
between the two others.

Another property, that will get us closer to the definition of
Ollivier-Ricci curvature is the following. If we define 𝑚𝑟,𝑥 to be
the uniform measure on ℳ whose support is the circle of center
𝑥 ∈ ℳ and of radius 𝑟 (for the geodesic distance on ℳ), one
can show�� that equation (�) under the condition Ric(ℳ) ≥ 𝑘 is
equivalent to

𝑊1
(
𝑚𝑟,𝑥, 𝑚𝑟,𝑦

)
≤
(
1 −

𝑘
2(𝑛 + 2)

𝑟2 + 𝑜(𝑟2)
)
𝑑(𝑥, 𝑦) (�)

This last theorem is interesting, providing a link between a
lower bound 𝑘 of the curvature and the geodesic distance 𝑑 on the
manifold ℳ. It is the inspiration for the definition of a notion of
curvature on metric spaces, removing the need for a Riemannian
framework.

Hence, in a geodesic metric space (𝒳, 𝑑) equipped with a set of
measures {𝑝𝑥 ∣ 𝑥 ∈ 𝒳

}, Ollivier�� defined the Ollivier-Ricci cur-
vature 𝜅(𝑥, 𝑦) of the geodesic linking 𝑥 and 𝑦 using the following
equation:

𝑊1(𝑝𝑥, 𝑝𝑦) =
(
1 − 𝜅(𝑥, 𝑦)

)
𝑑(𝑥, 𝑦) (�)

The 𝑝𝑥 here stands for a measure concentrated around 𝑥, which
is similar to the 𝑚𝑟,𝑥 introduced earlier.One can notice the direct
analogy between the definition (�) and equation (�).
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Figure ��: Intuition of Ollivier-Ricci curvature on graph. 𝑝𝑥 and 𝑝𝑦 are measures spread among the neighbourhoods
of 𝑥 and 𝑦.The curvature of the edge (𝑥, 𝑦) depends on how 𝑝𝑥 is transported to 𝑝𝑦.The bold (𝑥, 𝑦) edge on the left
has a negative curvature, because it connects two disjoints community and thus most of the mass of 𝑝𝑥 has to be
transported through this edge, causing the transportation distance to be at least 𝑑(𝑥, 𝑦). On the right, the edge has
positive curvature, because it connects nodes from the same community and that share neighbours.There is less mass
to move, and on shorter paths, so the total transportation distance is less than 𝑑(𝑥, 𝑦).

�� Ni et al. (����)

�� Bauer et al. (����)

A direct interpretation of a positive Ollivier-Ricci curvature
between 𝑥 and 𝑦 is the following: if one wants to transport a mass
spread around 𝑥 toward a mass spread around 𝑦, the total cost is
smaller than the geodesic distance between 𝑥 and 𝑦 (from equa-
tion (�).That might be because two points on the neighbourhood
of 𝑥 and of 𝑦 are closer than 𝑥 and 𝑦 for the geodesic distance.
Typically on a graph, nodes 𝑥 and 𝑦 might share neighbours,
or well-connected neighbour’s. Conversely, a negative curvature
shows that the best way to transport the mass between 𝑥 and 𝑦
might be to actually follow the geodesic between 𝑥 and 𝑦. In the
context of a graph, positive curvature tends to happen inside com-
munities, while negative curvature appears for inter-community
edges.This is highlighted in figure ��.

This provides a tool that can be used on graphs, as long as a
geodesic distance can be defined on those. Indeed, �-Wasserstein
distance can easily be computed using dynamic programming.
Some studies have provided good evidence that this can capture
deep structural information about graphs��.Those intuitions are
backed up by some theoretical results: for instance Bauer, Jost,
and Liu�� show a link with the spectrum of the Laplacian matrix
of a graph, which is known to carry structural information as
well.

�.�. Ollivier-Ricci Curvature on Connectivity
Graphs

My idea here,was to follow an approach used in structural connec-
tivity analysis with some of the topological indicators mentioned
in section � (see figure �). A way to use those local metrics is
to compute them for each node of each subject, and then, for
each node, compare the distribution of metric behind the con-
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trol group and the patient group for instance. Any significant
difference would cause the node (and thus the corresponding
brain area) to be considered of interest for the studied pathology.
This is what is done in Coloigner et al.� for instance. I wanted
to adopt a similar strategy, but using curvatures instead of the
more “traditional”measures. It turned out that a recent paper��
had already devised a similar method, with relative success.

I described in the previous theoretical section, the only require-
ment to compute an Ollivier-Ricci curvature, is to have a metric
space. In our context, this means being able to compute a distance
between two nodes on the graph.The choice of Farooq et al.��
was to consider shortest-paths in the connectivity graph, where
the distance would simply be computed as the number of hops
between two nodes. Even though accounting for the structure of
the graph, choosing this notion of distance disregards the weights
of connections, which is one of the drawbacks that we mentioned
in section � and that we are trying to avoid.

I made the choice to introduce another notion of distance,
based on the heat kernel of the graph.The heat kernel is basically
the solution to the diffusion equation at the surface of the graph,
involving the graph laplacian derived in section �.

(
𝜕
𝜕𝑡

+ 𝐿
)
𝑓 = 0

There is a direct analogy with the heat equation from physics.
This equation describes the diffusion of what could be the elec-
trochemical energy of a signal in the brain. As so, it is relevant
to study brain networks��. Links can also be formulated between
this equation and random walks on connectivity graphs.Those
random walks have been studied with interest in Robinson�� and
Robinson et al.��

A solution of this equation is 𝑓 ∶ 𝑡 ↦ 𝑒−𝑡𝐿𝑓0. The matrix
𝑘𝑡 = 𝑒−𝑡𝐿 is called the heat kernel of the graph, and each of its
entries 𝑘𝑡(𝑥, 𝑦) represents the amount of heat initially in 𝑥 having
reached 𝑦 at time 𝑡. As a kernel, it defines a distance between
nodes of the graph

𝑑𝑡(𝑥, 𝑦) = 𝑘𝑡(𝑥, 𝑥) + 𝑘𝑡(𝑦, 𝑦) − 2𝑘𝑡(𝑥, 𝑦)

This distance, for well chosen 𝑡, takes into account the com-
binatorial structure of the graph, as well as the strengths of the
connections, as shown in figure ��. This makes it more suited
than the “shortest number of hops” distance. Now that a distance
is defined between nodes, we can compute the curvatures of each
connection.
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Looking at connections having significative curvature differ-
ences between controls and patients yields more connections of
interest than the methods based upon classic topological mark-
ers (see figure ��, where we performed a similar analysis than
in Coloigner et al.�).This is both consistent with the claims of
Farooq et al.��, and with the intuition that curvature, along with
the heat kernel distance, is locally sensitive to the global topol-
ogy of the graph, and thus a wider part of the networks finds its
curvature affected by slight changes between the control cohort
and the patients.
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Figure ��:Heat Kernel distance computed on a connectivity matrix. Left: original connectivity matrix. Middle: heat
kernel distance matrix. Right: each point represents a fiber connection (i.e. an entry of the original matrix), the 𝑥
axis represents the strength of the anatomical connection, while the 𝑦 axis is the heat kernel distance between each
extremities of the connection.

Figure ��:Left: connections with
significative curvature difference
between controls and patients.
Right: connections with significa-
tive fiber number differences be-
tween controls and patients.

Conclusion
I have proposed to use a distance between graphs introduced re-
cently in Maretic et al.�� I have also extended this distance by the
use of barycenter computations.Having tried both approaches on
the dataset at my disposal, it seemed that the computed distances
and barycenters were able to capture and reflect some of the
structural information of the connectomes. Yet, the distance was
not subtle enough to really discriminate the two groups, which
mitigate its use for further studies in this context. I think that
the notion of barycenter for connectomes that I introduced could
still prove useful, thanks to its ability to leverage structural in-
formation from a whole cohort. It would be of interest to do
further experiments with it to better understand what it could
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yield, maybe with toy graphs. Another point that I have not fully
exploited is the knowledge of the transport map associated with
the Wasserstein distance.

I also studied Ollivier-Ricci curvature and its potential applica-
tion to connectome comparison. I proposed a framework to use
it in the setting of structural connectivity data that is novel from
how it had already been used. It should circumvent some of the
drawbacks of topological markers that we discussed in section
� and that are still present in the recent uses of Ollivier-Ricci
curvature for connectivity analysis��. I am still evaluating and
comparing this approach to prior works.There are also techniques
exploiting the Ollivier-Ricci curvature that are worth exploring,
especially for connectome comparison. Among others lie the
Ricci flow, that has been used with success for (non-biologic)
complex networks, see for instance Weber, Jost, and Saucan�� or
Ni et al.��



Introduction to OptimalTransport
The history of optimal transport formulations can be traced back
toGaspardMonge’sMémoire sur la théorie des déblais et des remblais
(����). In this document, he studied how to move masses of sand
or soil from one place to another.The main motivation of this
Mémoire being that a cost is naturally associated to the act of
moving a massic particle from one place to another, and it is of
particular interest to seek the optimal way of moving a global
quantity of mass from one place to another, that should require
the lowest amount of effort possible.

Monge’s formalism

𝜇

𝜈

•
•

𝑥

𝑦 = 𝑇(𝑥)

𝑐(𝑥, 𝑇(𝑥))𝜇(𝑥)

Figure ��: Earth mover problem.
We want to fill the blue hole (the
déblai, which is also called the tar-
get distribution 𝜈) using the red
matter (the remblai, which is also
called the source distribution 𝜇). 𝑇
represents the transport map, de-
scribing a way to send particles
from the source distribution to the
target distribution.𝑐(𝑥, 𝑇(𝑥)) is the
cost of moving from 𝑥 to 𝑇(𝑥)

We work in a space Ω.We consider two probability measures
𝜇 and 𝜈 on Ω, respectively the source and the target distribution.
We also consider a cost function 𝑐 ∶ Ω × Ω → R. If Ω is some
Euclidean space, 𝑐 can, for instance, be the Euclidean distance
induced in it.Monge’s problem is formulated as follows:

min
𝑇∶Ω→Ω

∫

Ω
𝑐 (𝑥, 𝑇(𝑥)) d𝜇(𝑥)

s.t. ∀𝐴 ∈ 𝒫(Ω), 𝜈(𝐴) = 𝜇
(
𝑇−1(𝐴)

)

The function 𝑇 is called a transport map. It carries information
about the displacement of each elementary unit of probability:
the mass located in 𝑥 is moved toward 𝑇(𝑥).The function 𝑐 thus
allows quantifying the cost of moving one elementary unit of
mass. We want to minimize the average distance travelled by
mass units during the optimal transport. The condition under
which the optimization is performed ensures that all the mass of
𝜇 has been transported toward the distribution 𝜈.Those concepts
are introduced in figure ��.

The issue with such a formulation of an optimal transport
problem is that it does not handle discrete probability measures.
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Indeed, if 𝜇 has a Dirac impulse bigger than every Dirac impulse
of 𝜈, then the transport map cannot be built: we are only per-
forming displacements of mass and not any actual allocation of
mass. For example in figure ��, we are not allowed to split any of
the transported yellow units.

Kantorovich’s formalism

Kantorovich came up with an alternative formulation for the op-
timal transport problem, that aims at handling discrete distribu-
tions. Kantorovich’s idea was to change the function 𝑇 ∶ Ω → Ω
into a probability 𝑃 on the product space Ω ×Ω called the trans-
port map.The probability 𝑃(𝑥, 𝑦) describes how much of the mass
in 𝑥 is moved toward 𝑦. If we denote𝐷 the distance matrix encod-
ing the costs of the problem,we obtain the following formulation
in the discrete case:

min
𝑃

⟨𝑃,𝐷⟩ =
∑

𝑖

∑

𝑗

𝑝𝑖𝑗𝑑𝑖𝑗

s.t.
{

∀𝑖
∑

𝑗 𝑝𝑖𝑗 = 𝜇𝑖
∀𝑗

∑
𝑖 𝑝𝑖𝑗 = 𝜈𝑗

The two conditions encode the fact that we aim to move all the
mass of 𝜇 toward all the mass of 𝜈. In the problem represented in
figure ��,Monge’s formulation forbids to split the mass of size
��� into two separate masses, and the problem is not feasible.Yet,
Kantorovitch’s formulation allows this: as shown in figure ��, the
mass of 150 is split into a mass of 90 and a mass of 60, both sent
to different places.

This is clearly a linear program, for which efficient solvers are
still under extensive study; Peyré, Cuturi, et al.�� provides a de-
tailed overview of many numerical aspects of this problem.

Continuous Kantorovich’s formulation

In the continuous setting, we introduce the following set of joint
probabilities, which encodes the analogue of the two conditions
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in the discrete case,making sure that 𝜇 has been fully transported
to 𝜈.

Π(𝜇, 𝜈) =
{
𝑃 ∈ 𝒫(Ω × Ω) ∣ ∀𝐴, 𝐵 ∈ Ω, 𝑃(𝐴 × Ω) = 𝜇(𝐴), 𝑃(Ω × 𝐵) = 𝜈(𝐵)

}

We can rephrase the definition of Π(𝜇, 𝜈) as being the set
of probability measures on Ω ×Ω with marginals 𝜇 and 𝜈.We
consider once again a cost function 𝑐 as in Monge’s problem.Kan-
torovich’s formulation now becomes the following optimization
problem, where 𝑋 ∼ 𝜇 and 𝑌 ∼ 𝜈:

inf
𝑃∈Π(𝜇,𝜈)

𝔼𝑃 [𝑐(𝑋, 𝑌)] =
∬

Ω×Ω
𝑐(𝑥, 𝑦)𝑃(𝑥, 𝑦) d𝑥 d𝑦

Existence of solutions to Kantorovich’s problems

One can wonder, in light of what happened for Monge’s problems,
whether solutions of Kantorovich’s problem as formulated above
exist. A rich literature exists on this topic. For instance, in the
case of measures on the R𝑛 space, with absolutely continuous
measures 𝜇 and 𝜈 with respect to the Lebesgue measure, the
existence (and uniqueness) of solutions will only depend on the
properties of the cost function. If we consider the cost function
𝑐𝑝(𝑥, 𝑦) = ‖𝑥 − 𝑦‖𝑝, then we have the following discussion:

▶ 𝑝 > 1: the strict convexity of 𝑐𝑝 ensures that there is a
unique solution to the Kantorovich problem

▶ 𝑝 = 1: here we can obtain the existence of a minimizer
for the Kantorovich, but we won’t have the unicity of the
solution

▶ 𝑝 < 1: in general, there will not exist solutions to the
problem

More generally the existence of minimizers, as well as their
uniqueness depends heavily on the structure of the space we
consider, and the properties of both the measures and the cost
function.A comprehensive study of those properties can be found
in Villani��.

Wasserstein distance.

Having formulated this optimization problem allows us to define
a distance between probability measures. Given a probability
space Ω, a cost function 𝑐 ∶ Ω × Ω → R+ and two probability
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Figure ��:Two interpolations (in
yellow) between 𝜇 and 𝜈. Left:
linear interpolation, defined as
(𝜇 + 𝜈)/2 (or equivalently as
argmin𝜂 𝑙

2
2(𝜇, 𝜂) + 𝑙22(𝜈, 𝜂), where

𝑙22 is the squared difference be-
tween shapes) . Right: Wasser-
stein interpolation, defined as
argmin𝜂𝑊

2
2(𝜇, 𝜂) + 𝑊2

2(𝜈, 𝜂)

measures 𝜇 and 𝜈 in𝒫(Ω), the p-Wasserstein-distance between
𝜇 and 𝜈 is defined as

𝑊𝑝(𝜇, 𝜈) =
(

inf
𝑃∈Π(𝜇,𝜈)

∬

Ω×Ω
𝑐(𝑥, 𝑦)𝑝𝑃(𝑥, 𝑦) d𝑥 d𝑦

)1/𝑝

Wasserstein barycenters.

This notion of distance allows to compute barycenters between
probability distributions, and obtain results that are way more
natural than barycenters obtained with respect to other norms,
like the 𝑙2 norm for instance. Figure �� presents a barycenter
obtained under Wasserstein-distance and a linear interpolation
(the two averaged distributions being the blue and the red one,
and the yellow shape being the barycenter.What emerges from
those two interpolations is that the Wasserstein distance seems
particularly well suited to manipulate distributions, as it appears
to take into account the characteristics (like modes, shape, etc)
of both the source and the target distribution, and the resulting
barycenter looks like a distribution combining those into one
distribution, while the 𝑙2 barycenter does not merge those speci-
ficities into one distribution but rather re-normalize the source
and target distributions.
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