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Introduction

In class, we have studied the PAC learning framework, whose aim is es-
sentially to study how well a learning algorithm working upon some given
hypothesis class can generalize with high probability. In this article, the
authors study the expected generalization of a learning algorithm. Their
idea is that the analysis similar to the ones conducted in class are based on
some “worst case scenario” when it comes to considering the underlying
data distribution, and that we could obtain more refined bounds if we take
into account some properties of this underlying distribution.

They introduce the notion of algorithmic transport cost of a learning
algorithm, which is closely related to the notion of Wasserstein distance be-
tween two probability distributions. They derive a bound on the expected
generalization of a given learning algorithm as a function of its algorithmic
transport cost with respect to the underlying distribution, and then use this
result to derive bounds in term of others quantites, each trying to provide
an informative measure of some aspect of the underlying distribution. Fi-
nally, they show that the framework that they propose can shed a new light
on the still puzzling abilities of Deep Neural Networks.
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In this synthesis, I will briefly introduce the framework that the au-
thors adopt in section 1, present their main theorem and give an overview
of the many results that they derive in section 2. I will then try to give
some intuition about their framework and theorem on a toy learning set-
ting (in section 3, which is the personnal work that I tried to conduct for this
synthesis) and we will see that even on a very simple example, this leads
to quite convoluted computations. I will then mention some theoretical
contribution that they provide for the analysis of deep neural networks’
generalization abilities (section 4).

1 General framework

We are working on the traditionnal statistical learning paradigm. That is
we have a instance space Z = X × Y , a hypothesis space W , and a loss func-
tion ` : Z ×W → R+. We consider that we have access to a training sample
Sn ∈ Zn of size n, drawn as a realization of {Z1, . . . ,Zn} ∼ D⊗n, where D is
the underlying data distribution on X ×Y , and each of the Zi is thus draw
i.i.d. from D. A learning algorithm A can thus be seen as a (possibly ran-
domized) mapping A :

⋃∞
n=1Zn→W that takes as input a training sample

and returns an hypothesis. Such an algorithm can be caracterized by its
Markov kernel PW |Sn .

Classically we define the risk of a given hypothesis w ∈W as

R(w) = Ez∼D [`(z,w)]

As usual, computing the risk as we have just defined is not really in
reach of learning algorithm since the distribution D is unknown, and we
rather use the empirical risk defined for an hypothesis w and a training as

RSn(w) = Ez∼Sn[`(z,h)] =
1
n

n∑
i=1

`(zi ,w)

We are interested in the expected generalization error of a learning al-
gorithm A under distribution D is defined as

G
(
D,PW |Sn

)
= E

[
R(W )−RSn(W )

]
Where the expectation is taken over the joint distribution of both the

training sample Sn and the hypothesis W , whose probability density func-
tion factorizes as PSn,W = PSn × PW |Sn . The goal of this paper is to provide
new upper bounds on this quantity.
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2 Wasserstein distance and main theorem

One of the achievements of Optimal Transport theory is to have devised a
meaningfull notion of distance between probability distributions.

In our particular setting, we will consider that we have a distance dW
on the hypothesis spaceW . Given two measure µ and ν onW , we define a
coupling T between µ and ν as a measure onW×W having marginal µ and
ν on its first and second factor (i.e. T (X,W ) = µ(X) and T (W ,X) = ν(X) for
X ⊂W ). We denote Γ (µ,ν) the set of all couplings of µ and ν.

Definition. (Wasserstein distance) The (1−)Wasserstein distance between
two measures µ and ν over W , under the condition that they have a finite
expectation, is defined as

W1(µ,ν) = inf
T ∈Γ (µ,ν)

E(W,W ′)∼T
[
dW (W,W ′)

]
This notion of distance is often referred to as the Earth Mover Distance,

because it quantifies the cost of moving the mass of µ toward the mass of
ν following the best coupling. This quantity is heavily studied and has
been shown to provide an insightfull notion of distance between probabil-
ity measures. The authors then introduce the following notion

Definition. (Algorithmic Transport Cost) The algorithmic transport cost of
a learning algorithm A caracterized by PW |Sn , under the underlying data
distribution D is defined as

Opt
(
D,PW |Sn

)
= Ez∼D

[
W1

(
PW , PW |z

)]
Intuitively, this quantity encodes how much the learning algorithm will

be sensitive to data points. A limit case might be when the learning algo-
rithm does not take into account the learning data, and thus PW = PW |Sn .
Such an algorithm should provide a low generalization error, since it has
the same performances on both training data and test data.

Note that this cost is indeed dependant on n since PW is the distribu-
tion of the output of the learning algorithm marginalized over all training
samples of size n as its input. The authors then proceed to show the core
theorem of their paper, which states the following:

Theorem. Assuming that W 7→ `(z,W ) is K-Lipschitz continuous for any
z ∈ Z, we have the following upper bound on the expected generalization
error of a learning algorithm A caracterized by PW |Sn :

G
(
D,PW |Sn

)
= E

[
R(W )−RSn(W )

]
≤ K ×Opt

(
D,PW |Sn

)
This theorem formalizes the intuition that we discussed above when

the output of the algorithm A is independant from the training sample.
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Figure 1: Relationships between probability metrics on the same mesurable
space. If an arrows links A to B anotated by the function g, it means that
A(·, ·) ≤ g(B(·, ·)). (Image from [ZLT18])

The strength of this bound is that it relates the data distribution and the
generalization, and does not involve a worst-case analysis over the actual
distribution of the data.

They then use this theorem as a starting point to derive a long serie of
bounds of the same kind, which can be summed up in figure 1. In partic-
ular they manage to link generalization with some information theoretic
metrics.

3 A toy learning problem to understand the authors
theorem

I will try to evaluate this bound on a toy setting. I will consider the follow-
ing binary classification problem over the space X = [0,1] and Y = {0,1}.
We will fix the following distribution on the data. First, we fix a point
a ∈]0,1[. Z = (X,Y ) ∼ D is such that X is drawn uniformly over X , and
Y = 1{x≥a}(X). The hypothesis classW that we consider is the set of all the
indicator functions of the form 1{x≥w} for w ∈ [0,1]; since we have a clear
bijection betweenW and [0,1], I will confuse those two sets, and even con-
fuse w and 1{x≥w} for the value of an element of W. We can easily equipW
with the distance dW (x,y) = |x − y|.
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Figure 2: Simple learning setting

This setting is more or less one of those that we have studied in the PAC
learning chapter. Let me define the following learning algorithm A

A :


Zn → W

Sn = {(x1, y1), . . . , (xn, yn)} 7→


max
1≤i≤n

s.t. yi=0

xi if {i | yi = 0} , ∅

0 otherwise

From the study that we have conducted in class, this yields an empirical
risk minimizer for the classification problem and ` being the loss defined
as

` ((x,y),1x≤w) = |y −1x≤w(x)| × |x −w| (1)

I do not consider a regular 0 − 1-loss because later on we will need a
continuity property on this loss `.

Now we will try to compute the algorithmic transport cost of such a
learning algorithm under D. First we need to compute PW , W being the
random output of A on random input Sn. Start by observing that the sup-
port of W is [0,a] by construction of A. Let S(0)

n be the random variable
denoting the number of points (xi , yi) of Sn classified as 0 (i.e. yi = 0 or
equivalently xi ∈ [0, a]). Let w ∈ [0, a].

P {W ≤ w} = P
{
S

(0)
n = 0

}
P
{
W ≤ w | S(0)

n = 0
}

+
n∑
k=1

P
{
S

(0)
n = k

}
P
{
W ≤ w | S(0)

n = k
}

Since for Z = (X,Y ) ∼ D, X ∼ U (0,1) we obtain Y = 1{x≥a}(X) ∼ B(1− a),
and thus S(0)

n ∼ B(n,a), hence

P
{
S

(0)
n = k

}
=

(
n
k

)
ak(1− a)n−k

Moreover w 7→ P
{
W ≤ w | S(0)

n = k
}

is the cumulative distribution func-

tion of the maximum of k random variables drawn uniformly between 0

and a, which equals
(
w
a

)k
.
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By definition ofA, we also have P
{
W ≤ w | S(0)

n = 0
}

= 1 since if S(0)
n = 0,

then W =A(Sn) = 0.
Hence, by differentiating with respect to w, we obtain

PW (w) = (1− a)n−k +
n∑
k=1

(
n
k

)
ak(1− a)n−kkw

k−1

ak
= (1− a)n−k +n(w+ 1− a)n (2)

Now that we have the expression of the density of W , we need to in-
vestigate PW |z. This time, it is fairly easy, since our algorithm A is actually
deterministic once given its input: those densities will be Dirac impulses.
We thus have for z = (x,y),

PW |z = δx if x ≤ a PW |z = δ0 otherwise

Now, the trick that will allow us to actually compute the algorithmic
transport cost in this specific case, is that computing the Wasserstein dis-
tance between a general distribution and a Dirac impulse is actually tractable.
We indeed have the following result

W1(µ,δt) = EX∼µ[d(X,t)]

Intuitively: there is only one way to move any distribution toward a
single Dirac impulse. That being said, we can thus compute for 0 ≤ x ≤ a,

W1(PW ,δx) =
∫ a

0
|x −w|PW (w)dw (3)

Now, using both equations (2) and (3), we can compute the integral and
we obtain:

W1(PW ,δx) =
1

2(an+ a)

(
a2((−a+ 1)n + 2)n+ a2(3(−a+ 1)n + 2) + 2((−a+ 1)nn+ (−a+ 1)n)x2

−4
(
a2 − ax − a

)
(−a+ x+ 1)n − 2a((−a+ 1)n + 1)− 2 (a(2(−a+ 1)n + 1)n

+a(2(−a+ 1)n + 1))x) (4)

Although the expression we obtain (using a CAS system) is quite un-
nice, we can already plot it for some values of n and a, and try to get the
intuition of this quantity, as shown in figure 3.

I tried to give an interpretation of those plots, especially about their
“valley” shape shifting toward the right as n grows: indeed, recall that
what we plot is the distance (in the Earth Mover Distance sense) of PW to δx
(the Dirac impulse). PW is essentially the distribution of the maximum of
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Figure 3: Graphs of the Wasserstein distance between PW and δx for several
value of a and n. First row: n = 10 with a = 0.2 (left) and a = 0.6 (right);
second row: n = 100 and a = 0.6

random variables drawn uniformly and independantly. What those plots
of the wasserstein distance tell us is that, as n grows, the output of the
learning algorithm will be closer and closer to the (optimal) value of a (this
is the shift to the right as n grows), but since the set Sn that we randomly
draw has some randomness, it is unlikely that its maximum reaches exactly
the value of a, and it will rather be a bit behind it: that is why we have this
“valley shape”.

We can confirm this behaviour by checking analytically using equation
(4) that for x ∈ [0, a],

lim
n→∞

W1 (PW ,δx) = a− x

Now, let us go back on our initial objective, which was to compute
the algorithmic transport cost of the learning algorithm A that we have de-
scribed. This quantity is defined as:

Opt
(
D,PWn

)
= Ez∼D

[
W1

(
PW , PW |z

)]
=

∫ a

0
W1 (PW ,δx)dx+ (1− a)W1 (PW ,δ0)︸                ︷︷                ︸

because every x classified
as y = 1 (equiv. to x > a)

yields δ0 through A

Once again, we can compute this quantity and obtain
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Opt
(
D,PWn

)
=

1
6(n2 + 3n+ 2)

(
2a2(2(−a+ 1)n − 3)−

(
a2(4(−a+ 1)n + 3)− 3a((−a+ 1)n + 2)

)
n2

−3
(
3a2 + 3a((−a+ 1)n − 2)− 2(−a+ 1)n + 2

)
n
)

− 6a((−a+ 1)n − 2) (5)

We can easily see that the loss function defined as in equation (1) is
1-Lipschitz continuous in W , i.e. for any w,w′ ∈W and z ∈ X ×Y ,∣∣∣`(z,w)− `(z,w′)

∣∣∣ ≤ 1× dW (w,w′) = |w −w′ |
Hence we can apply the theorem that we introduced in section 2 and

use the expression (5) to obtain the explicit bound in this very particular
setting:

G
(
D,PW |Sn

)
≤ 1×Opt

(
D,PWn

)
4 A result on Deep Neural Networks

Thanks to the information theoretic metric based bound that the authors
have derived, they manage to derive a bound on the generalization error
that a deep neural network neural network can achieve, using the follow-
ing remark. They take advantage of the peculiar structure of a DNN that
is its organization as a succession of layers, as presented in figure 4, and
using an adequate data processing inequality layer by layer (because the
information flow inside a DNN can be seen as a Markov chain), they man-
age to link the average generalization error of a DNN, obtaining a bound of
the form

E
[
R(W )−RSn(W )

]
≤ exp

(
−H

2
log

1
η

)√
K2R2I(Sn;W )

2n

Where η is the constant corresponding to the contractive property of
the mutual information in a data processing setting (from the data pro-
cessing inequality), K is a Lipschitz constant for the loss function, and R a
constant coming from the structure of the inequality space.

This bound provides insights as to why DNN are able to provide such
good generalization properties, and do not fall into the overfitting trap even
though they have a very strong expressiveness.

This latter analysis thus shows the strength of their approach that can
thus

• Disregard the worst case approach for the data distribution and fo-
cus on the very link between this data distribution and the learning
process.
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Figure 4: Hierarchical structure of a DNN (image from [ZLT18])

• Take into account some structure of the hypothesis space (here a suc-
cession of layers forming a markov chain processing data)

Conclusion

We have seen that the authors propose a novel approach to study the gener-
alization learning algorithms, and that this approach can be successful to
analyse the generalization properties of some general models (in this pa-
per, the DNNs). Yet, even though theoretically powerful, this model is not
really convenient to perform precise and concrete bound derivation, as we
can see in section 3 where even for a very simple learning setting, the rel-
ative untractability of optimal transport based metrics yields convoluted
computations.
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