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The Framework

K

N


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xN ,t




test t

N = |N |

yt =

{
1 if

∣∣∣{i ∈ K | xi ,t = 1
}∣∣∣ ≥ 1

0 if
∣∣∣{i ∈ K | xi ,t = 1

}∣∣∣ = 0
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Non adaptative testing

X =



x1,1
x2,1

... T2 T3 · · · TT
xN−1,1
xN ,1



7→
[
y1 y2 · · · yT−1 yT

]
= y

Design stage: X

Detection stage: A(X,y) 7→ K̂

ε = PX,K
(
K̂ 6=K

)
r =

log2
(N
K
)

T
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Some assumptions

Random test matrix: xi ,t ∼ B(p)

Density regime: K ≈ N1−β

Group Testing Algorithms: Bounds and Simulations 6 / 19



Setting and Framework Some algorithms Analysis of DD algorithm More bounds Simulations Perspectives Appendix

COMP algorithm

If an item appears in a negative test, then it cannot be
defective.



0
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0
1



−
2
3
...
−
N

[
0

]

K̂c

→ only false positives
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DD algorithm

If a positive test contains only one possibly defective item, then
this item is definitely defective
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SCOMP and SSS algorithms

SCOMP: iterative DD algorithm

SSS: an ILP formulation
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Analysis of DD algorithm (1)

non defectiveND
possibly defective PD =NDc =K∪G
say that i ∈ PD is definitely defective if there is a positive
test where i is the only PD

Define, given X and K:

L0 = # test with no defective items in it

Li = # test containing i and no other element of PD

L+ = # other tests

P {success}= P {L1 6= 0, . . . ,LK 6= 0}
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Analysis of DD algorithm (2)

P {L1 6= 0, . . . ,LK 6= 0}: hard to compute

Idea: condition on l0 and G :

P {L1 6= 0, . . . ,LK 6= 0} =
T∑

l0=0

N−K∑
g=0

P {L0 = l0}P {G = g | L0 = l0}

× P {L1 6= 0, . . . ,LK 6= 0 | L0 = l0,G = g}

L0 ∼ Bin(T ,(1− p)K )
G |L0 ∼ Bin(N −K ,(1− p)L0)
(Li )1≤i≤K |L0,G : harder, but essentially multinomial

P {success}=
T∑

l0=0

N−K∑
g=0

b(l0,T ,(1− p)K )b(g ,N −K ,(1− p)l0)ΦK (g , l0)
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Rate bounds
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Comparisons of the Algorithms

Figure: N = 500, K = 10, p = 1/10
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Simulation vs Bounds

Figure: N = 500, K = 10, p = 1/10
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Sparsity and Density

Figure: N = 500, left:K = 4, p = 1/4, right:K = 25, p = 1/25
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Why do we care?

Many problems can be seen as group testing (Biology
(DNA, diseases), Communication (Anomaly discovery in
networks, MAC channels, cognitive radios), Information
Technology (data compression, cybersecurity), Data
science in general (from counterfeit coins to graph
problems), Theoretical Computer Science (graph
problems, complexity theory)

This paper proposes a precise framework and works out a
part of the capacity spectrum

Still a limited case: noiseless, perfect recovery,
non-adaptative

Group Testing Algorithms: Bounds and Simulations 16 / 19
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R ∗COMP ≥
β

e ln2 ≈ 0.53β

R ∗DD ≥
1

e ln2 min
{
1, β

1−β

}
≈ 0.53min

{
1, β

1−β

}
R ∗SSS ≤

1
e ln2

β
1−β

Conjecture R ∗SCOMP

 = 1
e ln2

β
1−β for β ≤ 1/2

≥ 1
e ln2 for β > 1/2

Group Testing Algorithms: Bounds and Simulations 17 / 19
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SCOMP algorithm

use DD algorithm→ K̂
while K̂ is not satisfying: find i in PD which appears in the
largest number of tests unexplained by K̂ and do
K̂ ← K̂∪ {i }

Group Testing Algorithms: Bounds and Simulations 18 / 19
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SSS algorithm

minimize 1ᵀz

subject to xt = 0 · z for t with yt = 0
xt · z ≤ 1 for t with yt = 1
z ∈ {0,1}N

Group Testing Algorithms: Bounds and Simulations 19 / 19
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