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Introduction and Motivation
o0

Progress in Robotic Hardware

Figure: Up: Da Vinci chirurgical robot. Left: Fanuc welding robot.
Right: Boston Dynamics’ Atlas robot (Images from Wikimedia)
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Introduction and Motivation
oe

Progress in Machine Learning

Figure: Up: Alphago match. Left: Dota?2 Al. Right: Atari Al

Reinforcement Learning of Parameters in Complex Physical Systems 4/23



Reinforcement Learning
[ Je]ele)

Main Principles of Reinforcement Learning

St t

Environment

Figure: Reinforcement Learning (RL) feedback loop of the
interactions between the agent and the environment.
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Reinforcement Learning
o] Jele)

Some formalization

Markov Decision Process

AMDP M is a tuple (S, A,r,y,p,Po)

m S: set of states m y: discount factor
m A: set of actions m p:SxA—P(S): transition
mr:SxA—R:reward m pg € P(S): initial state
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n:S—>Aorm:S—P(A)
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Reinforcement Learning
0000

The RL problem

Trajectory

T = (sg,a9,S1,21,S2,---,S,) is a trajectory over M using a policy 7t
if so ~ pg, andfor t >0, a;, ~ (- | s;_1) and s¢11 ~ p(sp ag)-
We denote T, the distribution of such trajectories.
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7" = argmax J(m)
TC
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Reinforcement Learning
000e

Solving the RL problem: Policy Gradient Method

Idea: parametrize a policy g and perform gradient ascent:

Ory1 < 0 +aVJ(0;)
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Reinforcement Learning
000e

Solving the RL problem: Policy Gradient Method

Idea: parametrize a policy g and perform gradient ascent:

Ory1 < 0 +aVJ(0;)

m REINFORCE m TRPO
m Actor-Critic
m DPG m PPO
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Robotics, RL and the Reality Gap
@000

A Robotics Problem is a RL problem

S
m A
mp:SxA-P(S)
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Robotics, RL and the Reality Gap
@000

A Robotics Problem is a RL problem

S

m A
mp:SxA-P(S)
mr:SxA—-R
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Robotics, RL and the Reality Gap
0000

Issues of RL when applied to robotics

m Sampling efficiency
m Random exploration

m Real-time rollouts
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Robotics, RL and the Reality Gap
[e]e] le}

Simulation

Figure: A real PR2 robot and its simulated equivalent.
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Robotics, RL and the Reality Gap
000e

Strategies to Cross the Reality Gap

m Several learning phases
m Assess live discrepancies

m Dynamics randomization
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DR and UP
@00

Dynamics Randomisation

Peng et al.l introduced parametrization of the environment
using a vector ¢.

1x.B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real
transfer of robotic control with dynamics randomization. 2018
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DR and UP
@00

Dynamics Randomisation

Peng et al.l introduced parametrization of the environment
using a vector ¢.

70" = argmax IE [J¢ ]
TC

1x.B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real
transfer of robotic control with dynamics randomization. 2018
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DR and UP
(o] le}

Universal policy

Yu et al.? introduced the parametrized policy mg =1(-| ).

= arg;nax (PIEP [J¢(n¢)]

2w, Yu, J. Tan, C. K. Liu, and G. Turk. Preparing for the unknown: Learning
a universal policy with online system identification. 2017
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DR and UP
(o] le}

Universal policy

Yu et al.? introduced the parametrized policy mg =1(-| ).

= arg;nax (PIEP [J¢(n¢)]

at

Figure: Universal Policy with Online System Identification

2w, Yu, J. Tan, C. K. Liu, and G. Turk. Preparing for the unknown: Learning
a universal policy with online system identification. 2017
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DR and UP
[e]el J

New Issues of those two Methods (DR and UP-OSI)

m Sampling efficiency
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DR and UP
[e]el J

New Issues of those two Methods (DR and UP-OSI)

m Sampling efficiency
m Curse of dimensionality

m Choice of relevant parameters
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Embedding
®000000

Dimensionality Reduction

We want a mapping
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Embedding
®000000

Dimensionality Reduction

We want a mapping

V:O->9

7, W* =argmax E [Jy(m
M, W[ p(mw(g))]
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Embedding
0@00000

Autoencoders

Figure: Standard autoencoder representation
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Embedding
[e]e] le]elele)

Our architecture
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Figure: The new architecture we proposed.
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Embedding
[e]e]e] Jelele)

Analysing the embedding
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Figure: Toy problem on the Hopper environment.
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Embedding
0O000e00

Training the embedded OSI

<

at

Figure: Embedded Universal Policy with Embedded Online System
Identification
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Results
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Figure: Effect of the embedding in terms of (Left) OSI prediction error
and (Right)
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Embedding
0O00000e

Transferability

z _ 1000 - z
= 0.75 -1 5 -1
2 R Z 750 —_— 1
C 050 . g .
m — 3 [a=1 ~ — 3
S0 4 OSI-Tter e 900 OSI-Iter
« o s =
e ey 0 < 250 m -0
0.00 L |
- 10 -1 _ 10 - ]
B bl
. . 2 ) ) 2
Param. Dimensions Param. Dimensions

Figure: Effect of the embedding for transfer in terms of (Left) OSI
prediction error and (Right) Average reward on the task.
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Conclusion
[ J

Conclusion

m Promising direction and results

m Better evaluation needs to be done
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