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Optimal Transport theory aims to define a geometry along with a notion of distance
on the set of probability measures over a space.

I - Introduction

1/ Monge’s Problem

The history of optimal transport formulations can be traced back to Gaspard Monge’s
Mémoire sur la théorie des déblais et des remblais (1781), studying how to move masses of
sand or soil from one place to another. The main motivation of this Mémoire being that
we can assign a cost to the act of moving a massic particle from one place to another, and
it is of particular interest to seek for the most optimal way of moving a global quantity of
mass from one place to another.
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µ

ν

•
•

x

y = T (x)

c(x,T (x))

Formalism of Monge’s problem We work in a probability space Ω. We consider two
probability measures µ and ν on P (Ω). We also consider a cost function c : Ω ×Ω→ R.
This function can for instance be the Euclidean distance. Monge’s problem is therefore
the following

min
T :Ω→Ω

∫
Ω

c (x,T (x))µ(x)

s.t. ∀A ∈ P (Ω), ν(A) = µ
(
T −1(A)

)
The function T is called a transport map. It carries the information regarding the dis-

placement of each elementary unit of probability: the mass located in x is moved toward
T (x). The function c thus allows to quantify the cost of moving one elementary unit of
mass. We want to minimize the average distance travelled by mass units during the opti-
mal transport. The condition under which the optimization is performed ensures that all
the mass of µ has been transported toward the distribution ν.

Limitations The issue with such a formulation of an optimal transport problem is that
it does not handle discrete probability measures. Indeed, if µ has a Dirac impulse big-
ger than every Dirac impulse of ν, then the transport map cannot be build: we are only
performing displacements of mass, and not actual repartition of mass.

2/ Kantorovich’s problem

Kantorovich came up with an alternative formulation for the optimal transport problem,
aiming to handle discrete distributions.
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Change of transport plan The idea of Kantorovich is to change the function T : Ω→Ω

into a probability P on the product space P (Ω ×Ω). On the above example, Monge’s
formulation forbids to split the masse of size 150 into two separate masses. With Kan-
torovich’s formulation, this operation becomes accessible: the mass of 150 is splitted into
a mass of 90 and a mass of 60, both sent to different places. In the discrete case, we can
represent what happens through a matrix.

p3A p3B p3C

p2A p2B p2C

p1A p1B p1C

Transport Map

120 90 90

60

90

150

Distance matrix

d3A d3B d3C

d2A d2B d2C

d1A d1B d1C

Discrete Case If we denote D the distance matrix of the problem, we obtain the follow-
ing formulation in the discrete case:

min
P
〈P ,D〉 =

∑
i

∑
j

pijdij

s.t.
{
∀i

∑
j pij = µi

∀j
∑
i pij = νj

The two conditions encode the fact that we aim to move all the mass of µ toward all
the mass of ν.

Continuous Case In the continuous setting, we introduce the following set of joint prob-
abilities, which encodes the analog of the two conditions in the discrete case, making sure
that µ has been fully transported to ν.

Π(µ,ν) =
{
P ∈ P (Ω×Ω) | ∀A,B ∈Ω, P (A×Ω) = µ(A), P (Ω×B) = ν(B)

}
We can rephrase the definition of Π(µ,ν) as being the set of probability measures on

Ω×Ω) with marginals µ and ν.
We consider once again a cost function c defined as in the Monge’s problem. Kan-

torovich’s formulation now becomes the following optimization problem, where X ∼ µ
and Y ∼ ν:

inf
P ∈Π(µ,ν)

EP [c(X,Y )] =
∫ ∫

c(x,y)P (dx,dy)
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Existence of solutions One can wonder whether solutions of Kantorovich’s problem as
formulated above exist. A rich litterature exists on this topic. For instance, in the case of
measures on the Rn space, with absolutely continuous measures µ and ν with respect to
the Lebesgue measure, the existence (and uniqueness) of solutions will then depend on
the properties of the cost function. If we consider the cost function cp(x,y) = |x − y|p, then
we will have the following discussion:

• p > 1: the strict convexity of cp ensures that there is a unique solution to the Kan-
torovich problem

• p = 1: here we can obtain the existence of a minimizer for the Kantorovich, but we
won’t have the unicity of the solution

• p < 1: in general, there will not exist solutions to the problem

More generally the existence of minimizers, as well as their uniqueness depends heav-
ily on the structure of the space we consider, and the properties of both the measures and
the cost function. A comprehensive study of those properties can be found in [Vil03].

3/ Wasserstein distance

Having formulated this optimization problem allows us to define a distance between
probability measures.

Given a probability space Ω, a cost function c : Ω ×Ω→ R and two probabilitiy
mesures µ and ν in P (Ω), the p-Wasserstein-distance between µ and ν is defined
as:

Wp(µ,ν) =
(

inf
P ∈Π(µ,ν)

∫ ∫
c(x,y)pP (dx,dy)

)1/p

Definition

This notion of distance allows to compute barycenters between several probability
distributions, and obtain results that are way more natural than barycenters obtained with
other norms, like the l2 norm for instance. The following figure compares an interpolation
(i.e. a progressive weighted barycenter of two distributions) obtained under Wasserstein-
distance and a linear interpolation (the two target distributions being the blue and the
red one, and the purple shape being an intermediate interpolation).

Linear Interpolation

µ
ν
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Wasserstein Interpolation

µ
ν

What emerges from those two interpolations is that the Wasserstein distance seems
particularily well suited to manipulate distributions, as it appears to take into account
the specificities (like modes, shape, etc) of both the source and the target distribution, and
the resulting barycenter looks like a distribution combining those into one distribution,
while the l2 barycenter does not merge those specificities into one distribution but rather
renormalize the source and target distributions.

We can extend this idea to the computation of the barycenter of an arbitrary number
of distributions. Formally, the computing the barycenter µ of N distributions νi weighted
by the λi boils down to the following minimization problem:

min
µ∈P (Ω)

N∑
i=1

λiW
p
p (µ,νi)

Now we can observe what the barycenter looks like with 4 distributions (seen as im-
ages) on R2 in the Figure A.1.

Figure A.1: Each image contains several barycenters of the four shapes that are in the
corners
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II - How to compute Optimal Transport?

Now that we have a convenient formulation of the optimal transport problem, we can
study how to effectively compute minimizers of the optimal transport problem. For this
we will introduce several new formulation, more adapted to effective solving. Sometimes,
it is worth noting that we are only interested in computing the Wasserstein distance be-
tween two distributions, rather than the actual transport map.

1/ Duality

To effectively solve the optimal transport problem, we embrace the setting of discrete
spaces. In this setting, probability measures can be seen as a sum of diracs impulses.

µ =
n∑
i=1

aiδxi ν =
m∑
j=1

bjδyj

The cost function is a matrix D ∈ Rn×m
+ such that Dij = d(xi , yj)p. Our joint distribution

P is also a matrix of Rn×m
+ that has to satisfy several constraints that can be expressed ma-

tricially: if we denote by a and b the vector of the coefficients of the Dirac decompositions
of, the set which P has to belong to is:

U (a,b) =
{
P ∈ Rn×m

+ | P 1m = a, P T1n = b
}

The Wasserstein distance in a discrete space is defined as:

W
p
p (µ,ν) = min

P ∈U (a,b)
〈P ,D〉

Definition

Dual We now focus on the dual form of this optimization problem. For this we introduce
the Lagrangian, using the Lagrange multipliers α and β

L(P ,α,β) = 〈P ,D〉+αT(a− P 1m) + βT(b − P T1n)

As usual in a Lagrangian formulation, the objective function of the dual problem is:

g(α,β) = min
P>0

L(P ,α,β) = min
P>0

αTa+ βTb+ 〈P ,D −α1T
m − 1nβ

T〉

If the matrixD−α1T
m−1nβT has a negative coefficient, then by having the corresponding

coefficient of P grow toward +∞ we obtain a minimum of −∞. But if all the coefficients
are non negative, then 〈P ,D −α1T

m − 1nβT〉 is non negative and we just have to take P = 0
to obtain a non zero value. We therefore obtain:
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g(α,β) =
{
αTa+ βTb si D −α1T

m − 1nβT > 0
−∞ sinon

Finally, the dual problem is the maximization of this function g.

The dual of the optimal transport problem is:

W
p
p (µ,ν) = max

α∈Rn,β∈Rm

αi+βj6D(xi ,yj )
p

αTa+ βTb

Definition

We have reduced our initial problem into a linear programming formulation. Using a
minimum flow solver, we can solve this linear optimization problem in O(n3 log(n)). But
the solution is not stable, as illustrated on the following figure. If we slightly modify
our distance D or if we change the source and destination measures, the value of P can
drastically change, since P is a vertex of our simplex. One solution is to regularize the
problem to fall back on optimizing in a set Uα(a,b) strictly convex. This set is strictly
contained in U (a,b) and the optimal solution of this new problem will not necessarily be
optimal for the initial problem, but will remain valid.

We will introduce in the next section a regularization of the original problem, that will
us to exhibit an iterative algorithm that converges toward a meaningful approximation of
the minimizer, as well as mainly relying on matrix-product kind of linear algebrea and
thus potentially implemented on GPUs.

•
Pα

•

•
P

U (a,b)

Uα(a,b)

D

2/ Entropic Regularization

The regularization that we highlight consists in solving the optimal transport problem,
while maximizing the entropy of the joint-probability P . We therefore exhibit a new pa-
rameter γ that parametrizes the regularization and we obtain the following distance.

The regularized Wasserstein distance is defined as follows:

Wγ (µ,ν) = min
P ∈U (a,b)

〈P ,D〉 −γH(P )

Definition
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Remark Recall that we can consider two random variables X and Y such that X ∼ µ,
Y ∼ ν and consider their joint distribution P such that (X,Y ) ∼ P . The entropy of P
is maximal when X and Y are independant, i.e. when P factorizes as P = abT and this
maximum entropy is given byH(µ)+H(ν). The regularization therefore produces a matrix
whose positive values are more distributed. In other words, we favor randomness of the
transport map against determinism. The intuition behind this regularization comes from
the observation that actual trafic patterns in networks are sparser than the theoretical
solution obtained through a minimizer of the Kantorovich problem.

By a strict convexity argument, there exist a unique matrix Pγ minimizing the distance:

Pγ = argmin
P ∈U (a,b)

〈P ,D〉 −γH(P )

There exist a unique couple of vectors u and v belonging to Rn
+ and Rm

+ such that:

Pγ = diag(u)Kdiag(v), K = e−D/γ

Proposition 1

Demonstration We write the Laplacian of our new optimization problem.

L(P ,α,β) =
∑
ij

(
PijDij +γPij

(
log2 Pij − 1

))
+αT(a− P 1m) + βT(b − P T1n)

We compute the partial derivative with respect to each Pij

∂L
∂Pij

=Dij +γ log2 Pij −αi − βj

The dual problem is the maximization of the minimum of the Laplacian with respect
to P . We must look for P such that the partial derivative is equal to zero:

∂L
∂Pij

= 0⇒ Pij = e
αi
γ e−

Dij
γ e

βj
γ = uiKijvj

�
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Sinkhorn We can derive an iterative method to find this matrix Pγ . We use the condition
Pγ ∈U (a,b):

Pγ ∈U (a,b)⇔
{

diag(u)Kdiag(v)1m = a
diag(v)KTdiag(u)1n = b

Pγ ∈U (a,b)⇔
{

diag(u)Kv = a
diag(v)KTu = b

Then, by introducing � the coefficient-wise product, we can rewrite this as

Pγ ∈U (a,b)⇔
{
u �Kv = a
v �KTu = b

We end up considering a problem which was already studied in the numerical analysis
community, and known as the matrix scaling problem. From this formulation, rewritten as
below using the coefficient-wise division �, we can obtain an iterative algorithm perform-
ing Sinkhorn’s updates.

Pγ ∈U (a,b)⇔
{
u = a�Kv
v = b�KTu

First we modify u such that it satisfies the first equation, and we then use this value to
modify the value of v in order for it to satisfy the second. And we keep performing those
updates until convergence. Sinkhorn’s algorithm is thus the following:

Algorithm 1: Sinkhorn

repeat
u← a�Kv ;
v← b�KTu ;

until convergence of u,v;

Complexity It has been proved that the algorithm is a linear convergence scheme. More-
over, an iteration is naively done in O(mn) but the computation can easily be parallelized,
and especially performed on GPUs, the bottleneck of one update being the two matrix
products Kv and KTu. It is also possible to use grid convolution to obtain a complexity of
O(n logn) for one update. More practical precise and exhaustive details can be found in
Gabriel Peyré and Marco Cuturi’s Computational Optimal Transport [PC18].

Dual One can also notice the formulation of the dual thanks to the Proposition 1.

Wγ (µ,ν) = max
α,β

αTa+ βTb −γ
(
eα/γ

)T
K

(
eβ/γ

)
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Link with the KL divergence Writing the kernel:

Kγ (i, j) = exp
(
−
di,j
γ

)
We obtain a new formulation of the entropic regularized problem using the KL-divergence

Wγ (µ,ν) = min
P ∈U (a,b)

γKL(P |Kγ )

III - Optimal Transport and Machine Learning

Now that we have convinced ourselves of the good mathematical foundations of Optimal
Transport, and of the fact that we can actually compute it to some extent, we can wonder
how we can put this tool to use in the setting of machine learning.

1/ What do we want to optimally transport ?

In the previous section we have seen that we have at our disposal an algorithm to com-
pute optimal transport maps (Sinkhorn’s algorithm), and that this algorithm can be paral-
lelized. We can take advantage of this fact to actually compute optimal transport among
huge databases. Since computing optimal transport maps implies that we can compute a
meaningful distance between two objects, as long as they can be interpreted as distribu-
tions, one of the application of this is similarity based retrieval.

Color histograms The color-histogram of an image is a tool that characterizes the dis-
tribution of colors of an image. Interestingly enough, it has been noticed that color-
histograms are a good tool to describe the similarity of two images. Since we now have a
tool to compute the distance between two distribution probability, we can apply it to his-
tograms (that are essentially discretized distribution, so much so that the algorithms and
methods that we described earlier are relevant even without any fondamental change of
setting). For a given image we can therefore compute the distance between its histogram
and the histogram of images comming from a bigger database: picking images that have
the most similar histogram (in the sense of the Wasserstein distance) will therefore allow
to perform some form of similarity based image retrieval.
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Figure A.2: Two images and their respective color-histograms, embedded in R2 (Image
from Marco Cuturi’s Primer on Optimal Transport at NIPS 2017)

Cloud of word We can apply the same technique as before, but instead of considering
color-histograms, we can try to find some kind of distribution coming from other kind
of documents, for example text documents. Some previous work, such as the word2vec

framework allows for the embedding of natural language words into an Euclidean space.
A text (seen as a collection of words) therefore somehow defines a probability distribu-
tion over this embedded space. As for images we can then compare this distribution to
the distributions of other texts coming from a database (still in the sense of Wasserstein
distance), and hopefully retrieve text dealing with similar topics, although there may be
some significant differences in the actual vocabulary of those texts. We can take advantage
of the geometry of the distribution of probability in the embedded text space, that tries to
ensure that similar distributions are coming from texts dealing with similar topics.

2/ Wassersteinization

We can go further than just using the Wasserstein to compute distance between distribu-
tions and use this notion as distance as a main tool for already existing machine learn-
ing problems (we previously emphasized retrieval tasks for instance) by introducing the
Wasserstein distance on well studied machine learning settings and problems. We there-
fore shed a new light on those problems, and the results are often fruitful. Some authors
have coined the term Wassersteinization to describe this process.

Wassersteinization is the process of introducing optimal transport into an opti-
mization or machine learning problem

Definition

One way to approach Wassersteinization is to introduce Wasserstein distance as a loss
or fidelity term in optimization problems. This will motivate the interest toward not only
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the very Wasserstein distance, but also its derivative. More precisely one can show that
we can computationaly evaluate the derivatives of the Wasserstein distance. Therefore we
can deal with it in a variety of optimization problems, including machine lerning related
ones.

Averaging data We can also see optimal transport as a normalization tool for data. One
of the setting where this point of view as been proposed is the one of data averaging.
We have already discussed earlier the benefits of Wasserstein barycenters when compared
to, say, linear interpolations or l2 barycenters. One can put this in good use in the case
of data acquired through real world experiment. For instance, we can imagine a neuro-
imagery setting, where the goal is to study the reaction of the brain of a patient to a certain
precise stimulus. To do this we subjet the patient to the stimuli several time and we aim
to submit the measures of the brain activity to a machine algorithm to study some of its
features. But because of the huge variety of data acquisition hazards (noise, imprecisions
in the measures, patient variability etc), the result will slighty differ from one experiment
to another although it concerns the same stimulus. Therefore computing the average of
the brain activity (that can easily seen to be an analog of a probability distribution on
the brain space) in the sense of Wasserstein barycenters can hopefully give access to more
relevant data, without loosing the meaningful information.

Figure A.3: On the left the standard average brain map among several experiments, on
the right the Wasserstein average of the same brain activity data. (Image from [GPC15])

Aggregating distributions Instead of processing the input of our machine learning al-
gorithms, one can use this idea of aggregating several distribution on the output of ma-
chine learning algorithms. Imagine that we want to use Bayesian learning (ie. learn a
probability distribution, in a Bayesian framework), on a dataset so huge that it cannot
even fit on a single machine, and would it fit that the computation time would be out of
reach. We can imagine to split the dataset into J different parts and distribute it amongst
J machines running the same learning algorithms. The result of this process is a set of
J distributions learned from each part of the dataset. Although they represent the same
truth, because of the variation of the data those distributions will be slightly different.
Once again Wasserstein-averaging provides a useful tool to aggregate those distributions
into an hopefully meaningful one, closer to the underlying real distribution. The good
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news is that this Wasserstein posterior aggregation method comes with theoretic statisti-
cal guaranties!

Semi-supervised learning and Wasserstein propagation We are interested in smooth-
ing a graph (V ,E) where an histogram is associated µv to each vertex v, with a susbset S
of the vertices that have a fixed histogram (known data). To write this more formally, we
want to solve the following optimization problem:

min
µi∈P (Ω)

for i∈V \S

∑
(e1,e2)∈E

W 2
2

(
µe1 ,µe2

)
That is, we want to propagate the distribution known at certain vertices along the

graph, with a "Wasserstein manner". It is a formulation of several semi-suppervised learn-
ing problems, where we only have at our disposal the structure of the graph, and infor-
mation a small portion of the vertices. The distribution that we are handling here can for
instance be probability distribution of belonging to each class, in a classification problem
(which leads us to solving the "stereotypical" semi-suppervised problem that is vertice
labelling), but we could consider broader classes of problems with this formalism.

3/ Wasserstein PCA and Geodesics

The Wasserstein distance gives the space of probability measure a structure of geodesic
metric space. Moreover, it has been shown that when Ω is an Hilbert space, then the
space of probability measures endowed with the Wasserstein distance has a Riemannian
manifold structure (see [AGS08]). Some authors such as [SC15] have proposed to take
advantage of this structure to define the notion of Principal Geodesic Analysis over this
space, which aims to be an analog of the good old Principal Component Analysis with
Euclidean metrics.

The idea is that, as Ambrosio et al. shown in [AGS08], we can characterize the geodesic
path between two distributions, that is the shortest path with respect to the Wasserstein
distance. We denote (ρtµ1→µ2

)t the geodesic path between µ1 and µ2, parametrized by
t. Now, given a family of measures ν1,ν2, . . . ,νN , we would like to compute the pricipal
geodesics of this family, that is find a set of geodesics between some measures (that also
are to compute) that passes through the Wasserstein iso-barycenter of the νi and that are
close to each of the νi .

µ1
µ2(

ρtµ1→µ2

)
t

ν1

ν2

ν3

ν4
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We can formalize this idea more precisely as follows, using for example the second
order Wasserstein distance W 2

2 .

min
µ1,µ2∈P (Ω)

N∑
i=1

min
t
W 2

2

(
ρtµ1→µ2

,νi
)

Since a couple of measures (µ1,µ2) entirely characterizes a geodesic path, our optimiza-
tion is performed over the space of probability measures over Ω. This problem can be
solved using the methods that we presented earlier in our How to compute Optimal Trans-
port section, and some projected gradient descent because of the overall non-convexity of
this problem. We can iterate this process to gradually explain more and more features of
our distributions.

Figure A.4: Principal Geodesic Components obtained from a subset of 2000 images of the
MNIST database, containing an equal proportion of 2 and 4.(Image from [SC15])
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I - Sinkhorn Distances: Lightspeed Computation of Opti-
mal Transport [Cut13]

In this paper published in 2013, Marco Cuturi proposed one of the currently most used
algorithm to compute Wasserstein distances. He smoothed the classic optimal transport
problem thanks to an entropic regularization and it leads to a new notion of distance
which has a faster solver. This follows the regularization idea the we introduced in the
first chapter. He also shows in this paper that using such a regularization gives better
results on MNIST classification problems than using the standard Wasserstein distance
(or obviously using the Euclidean distance). This paper is part of the search for adequate
and tractable distances in machine learning. Wasserstein distance is more suited than
Euclidean distance to many problems in machine learning, but because the complexity to
compute it is O(n3 logn) when n is the size of the data, Wasserstein distance is rarely used.
That is why such techniques to compute the Wasserstein distance had to be developped.

Idea The main ideas of this paper are the use of an entropic-regularization to sim-
plify computation when using Sinkhorn iterative algorithm and the idea of computing
the distances between one point and a family of other points in the same time, to use
matrix-matrix multiplications instead of matrix-vector multiplications while computing
distances between pair of points. Thus the algorithm can be implemented on GPU archi-
tectures.

16
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Regularization We recall that the goal of the optimal transport problem in the Kan-
torovich formulation is to find a joint distribution P ∈ Rn×n where the marginals equal the
two distributions for which we want to compute the distance. That is to say P 1n = a and
P T1n = b when we compute the distance between a and b. Following the notations intro-
duced in the first chapter, we call U (a,b) the set of all possible values for P . By denoting
the entropy by H we can show that:

H(P ) 6H(a) +H(b)

AndH(P ) =H(a)+H(b) when P = abT (that is, when a and b are independant). We then
restrict P to the new set:

Uα(a,b) = {P ∈U (a,b) |KL(P ||abT) 6 α} = {P ∈U (a,b) |H(P ) >H(a) +H(b)−α}

Two reasons are given to this restriction. The first one is that it will be easier to com-
pute the distance. The second is that without regularization P has almost 2n−1 non-zero
coefficients. Thus the transport is almost deterministic and it is not natural. That is why
smoothing the transport plan with entropic regularization is presented as a good idea. In
the paper, it is shown that this restriction induce a new distance:

dM,α = min
P ∈Uα(a,b)

〈P ,M〉

Where M is a distance matrix.

Computation By duality theory it is obtained that to α, corresponds a value λ > 0 such
that the distance dM,α is equal to the distance dλM defined by:

dλM(a,b) = 〈P λ,M〉, where P λ = argmin
P ∈U (a,b)

〈P ,M〉 − 1
λ
H(P )

Then Cuturi shows that this new distance can be computed with a much cheaper cost
than the original Wassertein distance dM . In fact the iterative Sinkhorn algorithm pre-
sented below converge in few steps to the transport plan P λ. The Figure B.1 summarize
the relationships between all these distances.
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Figure B.1: Graphical representation of different distances and their relationships.

Algorithm 2: Sinkhorn
(
a, {bi}Ni=1,M,λ

)
B← [b1, . . . , bN ] ∈ Rn×N ;
K ← exp(λM) ;
u = [u1, . . . ,uN ]← 1n×N / n ;
repeat

u← a/
(
K

(
B/

(
KTu

)))
;

until convergence of u;
v = [v1, . . . , vN ]← B/

(
KTu

)
;

P λi ← diag(ui)Kdiag(vi) ;
return d =

[
dλM(a,b1), . . . ,dλM(a,bN )

]
=

[〈
M,P λ1

〉
, . . . ,

〈
M,P λN

〉]

Results The regularized Wasserstein distance is then used in a SVM to classifiy images
of the MNIST database. The Figure B.2 compare the error on a test set for different dis-
tances used in the SVM. The distance EMD is the classical optimal transport. As we can
see the regularized version beats all other distances. Furthermore he evaluated the exe-
cution time by stopping the iterations when ‖di+1/di − 1‖ < 10−4 where di is the distance
obtained at the end of the iteration i. He gave a comparison between EMD and regular-
ized Wasserstein for different values of λ in the Figure B.3, highlighting the efficiency of
computing the regularized optimal transport.
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Figure B.2: Test error for different distances

II - Wasserstein GAN [ACB17]

This paper proposes a new GAN training algorithm based on Wasserstein distance. When
we learn a probability distribution we need to have a notion of divergence between prob-
ability distributions. In a first time they show the advantages of the Wasserstein dis-
tance over all well-known other divergences on probabilities. Thanks to their WGAN (for
Wasserstein GAN), they cure the problem of the need of maintaining a balance between
training discriminator and training generator. They also observed that the mode dropping
phenomenon is reduced. Furthermore their GAN allows to plot the Wasserstein distance
continuously which is very usefull for debugging and having an estimation of the quality.

Advantage of Wasserstein distance They illustrate the interest of Wasserstein distance
with a toy problem, that is the convergence of the probability Pθ = gθ(Z) = (θ,Z) toward
P0 = (0,Z) for Z ∼U ([0,1]) when θ tends to 0. We have:

• W (P0,Pθ) = |θ| where W is the Wasserstein distance.

• JS(P0,Pθ) =
{

log2 if θ , 0
0 if θ = 0

where JS is the Jensen-Shannon divergence.

• KL(P0,Pθ) = JS(Pθ,P0) =
{

+∞ if θ , 0
0 if θ = 0

where KL is the Kullback-Leibler diver-

gence.

• δ(P0,Pθ) =
{

1 if θ , 0
0 if θ = 0

where δ is the total variation distance defined as

δ(P0,P1) = supA∈Σ |P0(A)−P1(A)| with Σ the set of all Borel subsets.
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Figure B.3: Execution time for different distances

Furthermore the Wasserstein distance is the only one for which there is convergence.
Then a gradient descent can be applied using the Wasserstein distance while it cannot
be applied with other divergences. This is a just an example but they also proved the
following theorem which shows the continuity under some assumptions.

Let Pr be a distribution over X and let Z be a distribution over another space Z
(e.g Gaussian). Let g : Rd × Z → X be a function that will be denoted gθ(z) for
g(θ,z). We denote by Pθ the distribution of gθ(Z). Then:

• If g is continuous in θ, so is W (Pr ,Pθ).

• If g is locally Lipschitz and satisfies the following regularity assumption:
By denoting the local Lipschitz constant L(θ,z) we have Ez∼Z [L(θ,z)] < +∞.
Then W (Pr ,Pθ) is continuous everywhere and almost differentiable every-
where.

• The two previous statements are false for Jensen-Shannon and KL diver-
gences.

Proposition 2

They also give another theorem that well show that the Wasserstein distance is a very
natural divergence for probability distributions.
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Figure B.4: Algorithm of the WGAN

Consider a sequence of distributions (Pn) on a compact space X . If W (Pn,P)→ 0

for a certain distribution P, then Pn
D−→ P where the limit is in the sense of the

convergence in distribution.

Proposition 3

WGAN To construct their GAN they need to compute the gradient of W (Pr ,Pθ) with
respect to θ. For that they consider the following dual formulation of the Wasserstein
distance:

W (Pr ,Pθ) = max
‖f ‖L61

Ex∼Pr [f (x)]−Ex∼Pθ [f (x)]

Where ‖f ‖L denote the Lipshitz coefficient of f . If f is the solution to the maximization
problem then the gradient is:

∇θW (Pr ,Pθ) = −Ez∼Z [∇θf (gθ(z))]

To find f they train a neural network parameterized with weightsw in a compact space
W that lead to a function fw. Then they can backpropagate θ using Ez∼Z [∇θfw(gθ(z))]. To
havew in a compact space, they use weight clamping. Their algorithm is in the Figure B.4.

Results First, the authors set up a small experiment to showcase the difference between
GAN and WGAN (Figure B.5). There are two 1D Gaussian distributions, blue for real and
green for fake. Train a GAN discriminator and WGAN critic to optimality, then plot their
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values over the space. The red curve is the GAN discriminator output, and the cyan curve
is the WGAN critic output.

Figure B.5: Comparison between a GAN discriminator and the WGAN Critic

Both identify which distribution is real and which is fake, but the GAN discriminator
does so in a way that makes gradients vanish over most of the space. In contrast, the
weight clamping in WGAN gives a reasonably nice gradient over the whole space.

Another important point is that the quality of the generation is correlated to Wasser-
stein estimation as we can see in the Figure B.6. We can also see that the training of the
critic function f works well as the Wasserstein estimator strictly decrease. The gradient
of the loss function is well computed. But this is not a method to compare the quality
of different GANs as the estimator is defined with a constant scaling factor depending on
the critic’s architecture. They finally observed an improvement of the stability.

III - Convolutional Wasserstein Distances: Efficient Opti-
mal Transportation on Geometric Domains [SdGP+15]

Because a single step of Sinkhorn algorithm has a complexity of O(n2), computing the
Wassertein distance may take a while in many cases, even though the number of itera-
tions needed to converge toward a good minimizer is small. That is why the researchers
who wrote this paper thought about a more effective solution to perform a step of the
algorithm. They found a way to use Gaussian convolution with a O(n logn) complexity
instead of a matrix-vector product. More generally they use a heat kernel. So instead of
the convolution it can also be a sparse pre-factored linear system which can be computed
in a complexity smaller than O(n2). Furthermore this approach does not affect the overall
convergence speed of the scheme, which remains linear. Of course this can not be applied
to all the cases of optimal transport, but it can be used on very common geometric do-
mains, like images or meshes. In addition of the computation of Wasserstein distance, the
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Figure B.6: Sample images at different iterations of the training

authors also propose a way to use convolution in the computation of Wasserstein barycen-
ters and Wasserstein propagation.

Using a heat kernel in the entropy-regularization We recall what is the entropy-regularized
Wasserstein distance between µ0 and µ1 on the domain M:

W 2
2,γ (µ,ν) = inf

π∈Π(µ,ν)

[∫ ∫
M×M

d(x,y)2π(x,y)dxdy − γH(π)
]

= γ
[
1 + min

π∈Π(µ,ν)
KL(π|Kγ )

]
Where have kept the same notations as the ones used in the first chapter, that is

Π =
{
π ∈ P (M ×M) | π(·,M) = µ0,π(M, ·) = µ1

}
H(π) = −

∫ ∫
M×M

π(x,y) lnπ(x,y)dxdy

Kγ = e−d(x,y)2/γ

KL(π|K) =
∫ ∫

M×M
π(x,y)

[
ln
π(x,y)
K(x,y)

− 1
]
dxdy

This is a strictly convex problem thanks to the entropy. The idea of the paper is to use
heat kernel because in some cases, the solution of the diffusion equation can be computed
in a effective way. We denote byHt(x,y) the diffusion between x and y after a time t in the
heat kernel. Just remember that a heat kernel is a solution of the heat equation:

∂f

∂t
= ∆f

One can show the following that the following approximation holds
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Kγ ≈Hγ/2(x,y)

We won’t store H because it could have a space complexity in O(n2) and we want a
lower complexity. But we generally know a way to apply H to a vector. In the case of
images we apply Gaussian convolution with σ2 = γ . In the case of triangle meshes we
associate a weight to faces proportional to their area. We denote by a the vector of those
weights (for images of size n ×m we set a = 1/(nm)). Then we denote by L the cotangent
Laplacian and by Da the diagonal matrix whose diagonal is a. By discretizing the heat
equation, we obtain:

w =Ht(v)⇔ (Da + tL)w = v

The linear system can be solved efficiently by pre-computing a sparse Cholesky factor-
ization.

Algorithm With some computations we arrive at

Algorithm 3: Convolutional-Sinkhorn(µ0,µ1,Ht, a)

v,w← 1 ;
repeat

v← µ0 �Ht(a⊗w) ;
w← µ1 �Ht(a⊗ v) ;

until convergence of v,w;
return 2taT [(µ0 ⊗ lnv) + (µ1 ⊗ lnw)]

Where � and ⊗ denote element-wise operations. As with classical Sinkhorn algorithm
we obtain a simple iterative algorithm where, this time, each step can be computed in
O(n logn) in many cases, n being the size of the domain M.

Barycenter An algorithm for computing barycenters is also provided. We won’t enter
into details but we give their algorithm for computing the barycenter of distributions µi
associated with weights αi for 1 6 i 6 k:
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Algorithm 4: Convolutional-Barycenter({µi}, {αi},Ht, a)
v1, . . . , vk← 1 ;
w1, . . . ,wk← 1 ;
repeat

µ← 1 ;
for i = 1, . . . , k do

wi ← µi �Ht(a⊗ vi) ;
di ← vi ⊗Ht(a⊗wi) ;
µ← µ⊗ dαii ;

// Optional ;
µ← Entropic-Sharpening(µ,maxiH(µi)) ;

for i = 1, . . . , k do
vi ← vi ⊗µ� di ;

until convergence of vi ,wi ;
return 2taT [(µ0 ⊗ lnv) + (µ1 ⊗ lnw)]

Here entropic sharpening allows us to make the entropy of the result µ smaller than
the maximum entropy of all µi . To do so if H(µ) is greater than maxiH(µi), then we set µ
to µβ where β is such that H(µβ) = maxiH(µi). We can find such a β using Newton-like
methods.

Applications This has many applications in geometric domains. Applications that are
given are:

• Shape interpolation (Figure B.7)

Figure B.7: Application to shape interpolation
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• BRDF design

• Color histogram manipulation

• Skeleton layout

• Soft maps

Finally Figure B.8 and Figure B.9 are two images of barycenters that they have com-
puted. The first one is an image where we find several barycenters of four images that are
in the corners. The second is an interpolation between two cards. As we tried to reproduce
it in our implementation part we put them here, for comparison sakes:

Figure B.8: Barycenters of four images

Figure B.9: Interpolation of two images of cards for times t = 0,0.25,0.5,0.75,1.



Chapter C

Implementation

We decided to implement the last paper to compute Wasserstein distances on images in
an efficient way. We then use convolutional Sinkhorn in an SVM classifier as Marco Cuturi
used Sinkhorn in his paper to classify images of the MNIST digit database [Cut13]. The
implementation of the convolutional Wassertein distance has been written in C++. We
then write the Gramm matrix of a subset of the MNIST database in a file and use it in a
Python script to use SVM from Sklearn library. Our implementation is for example avail-
able at http://perso.ens-lyon.fr/nemo.fournier/studies/M1/ML/implementation.
tar.gz.

How to use our code OpenMP has been used to parallelize the code. If you don’t have
OpenMP already installed, you can install it with sudo apt install libomp-dev. To
compile the C++ code you just have to type make. Then you need to obtain the train
image datatset and the train label dataset of the MNIST database http://yann.lecun.

com/exdb/mnist/. To do so you have to run the script get_mnist.sh which will download
and rename the files correctly. The executable main created by make command can be used
in four ways.

• ./main bar to reproduce an image similar to the Figure B.8; An image containing
different barycenters of four shapes.

• ./main card to reproduce images similar to the Figure B.9; An interpolation of two
images of cards.

• ./main wass > kernel.txt to compute a kernel with the convolutional Wasser-
stein distance of N_TRAIN images of the MNIST dataset. We project N_TEST other
digit images of the MNIST dataset on the kernel space created. You can change
the parameter N_TRAIN and N_TEST at the beginning of the file src/main.cpp. The
kernel will then be written if the file kernel.txt.

• ./main eucl > kernel.txt to do the same as the previous command but with Eu-
clidean distance instead of Wasserstein distance.

27
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Finally when a kernel file is computed you can test SVM on it thanks to the python script
learning.py. Because computing Wasserstein kernel may take a while to compute we
provide a pre-computed Wasserstein kernel kernels/wass.txt as well as an Euclidean
kernel kernels/eucl.txt. You can then run:

python3 learning.py < [kernels/wass.txt | kernels/eucl.txt]

It will print the performances of these two kernels, show the projection of the data on the
two principle components and finally show the kernel matrix.

Barycenters We first computed some barycenters to be sure that everything works. The
code for computing Wasserstein distances and barycenters is in the file src/wasserstein.cpp.
The code that produce the barycenters that we will present is in the file examples.cpp.
The first example is the reproduction of Figure B.8. Here is what we obtained:

Figure C.1: Reproduction of Figure B.8

The result seems to be correct. We then try on larger images, the card images that we
can find in the original paper presenting convolutional Wassertein [SdGP+15]. Here is
what we obtained:

Figure C.2: Reproduction of Figure B.9

SVM usage As proposed in the paper of Cuturi [Cut13], we used the Wasserstein dis-
tance to compute the Gram matrix for 500 image and we used it as a kernel in a SVM.
On a test set of 1500 images we obtained 92.4% of good answers. Whereas with a kernel
using Euclidean distance we obtain a good answer on only 88.4%. To check these results
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you can run the python script learning.py on the two kernels that are in the kernels

folder.
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