
The Sound of Silence
Geometric Filtering of EEG Signal.


Detection of High-Frequency Oscillations.

1



L3 / Bachelor Internship (2018)

2

Paulo Gonçalves

Patrick Flandrin

1. High-Frequency Oscillations 

2. Time-Frequency Analysis 

3. T.F. Analysis for HFO Detection

Definition, Clinical Relevance, Detection

Motivation, Basic Principles and Modern Approaches



High Frequency Oscillations
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Engel Jr, J., Bragin, A., Staba, R., & Mody, I. (2009). High-
frequency oscillations: What is normal and what is not? Epilepsia, 

50(4), 598–604. doi:10.1111/j.1528-1167.2008.01917.x

Transient High-Frequency Oscillations (HFOs) are field potentials 
that reflect short-term synchronization of neuronal activity.

Ripple Fast Ripple

Ripple (80-250Hz)

Fast Ripple (250-500Hz)

HFO (especially fast-ripples) may provide 
information on the epileptogenic brain 
areas (2018 state of the art). Therefore, we 
want to look at their signature in sEEG to 
extract relevant information for epileptic 
patients. 



Primer on sEEG
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Stereotactic EEG. Invasive electrodes are implanted into the patient’s brain, and 
provide spatially localized measures, often sampled in the kHz range thus 
allowing to study high frequency events. Image from Matthew Mian (https://mian-
neurosurgery.com/seeg)

https://mian-neurosurgery.com/seeg
https://mian-neurosurgery.com/seeg


Challenges in Detection
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Easy case. Some events are clearly 
visible and easily isolated, even to 
the inexperienced eye.

Harder case. HFO can happen simultaneously with other 
physiological events. From left to right: 


1. spike + ripple

2. ripple + fast-ripple

3. spike + ripple + fast-ripple 

HFO are only one of the many physiological phenomenons that can be observed in (s)EEG signals.



Challenges in Detection
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Artefacts make the events harder to detect using standard filtering techniques.

Left. An artefact at t≈0,8s 
followed by two simultaneous 
HFO (ripple and fast-ripple) at 
t≈1s.

Right. Filtered signal, in the 
ripple band (80-250Hz)

The Gibbs phenomenon makes filters 
hard to use in order to single-handedly 
detect HFOs: their extended frequency 
range (from 80 to 500Hz) is prone to be 
polluted by transient events and 
artefacts.



Why Time-Frequency Analysis?
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Explicit the link between time and frequency. Try to forget about the pure temporal 
(observed signal) and pure frequency (Fourier transform) and link the two of them.

Limitations of spectral analysis. Here two signals are 
spectrally analyzed. The first one is a succession of 0,25s of 
25Hz oscillations and 0,25s of 60Hz oscillations. The second 
one is time reversed. The Fourier analysis, when analyzing this 
signal on all its duration is unable to distinguish the two (if we 
restrict ourselves to the amplitude of its coefficients).



Why Time-Frequency Analysis?
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Limitations of spectral analysis. Here we perform a spectral analysis of a chirp (left), 
which is a signal whose frequency is linearly modulated over time. Think to a slide-whistle 
or . The resulting spectrum (right) is hard to analyze and does not really 
capture the underlying notion of instantaneous frequency.

cos(ωt × t)

 

Explicit the link between time and frequency. Try to forget about the pure temporal (observed 
signal) and pure frequency (Fourier transform) and link the two of them.

https://upload.wikimedia.org/wikipedia/commons/d/d2/Human_whistling.ogg


Time-Frequency Analysis
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Regular Fourier analysis is about decomposing a signal on a basis of atoms whose 
frequencies are perfectly localized. For a frequency , one can compute the coefficient  of this 
decomposition.

ν cν

⟨ ⟩,
⟨ ⟩,

cν1

cν2

Back to Fourier



Time-Frequency Analysis
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In time-frequency analysis, we seek to decompose a signal on a basis of atoms which are now 
localized both in time and in frequency. For a frequency  and a time , one can compute the 
coefficient  of this decomposition.

ω τ
cω,τ

×
τ

cν1,τ⟨ ⟩,τ

×
τ

cν2,τ⟨ ⟩,τ

Those new atoms (or logons) 
induce a Gabor decomposition.

Towards Gabor



Time-Frequency Analysis
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In time-frequency analysis, we seek to decompose a signal on a basis of atoms which are now 
localized both in time and in frequency. For a frequency  and a time , one can compute the 
coefficient  of this decomposition.

ω τ
cω,τ

Spectrogram

cν,τ

A spectrogram of a violin waveform. Created by 
User:Omegatron for WikiMedia.

https://commons.wikimedia.org/wiki/User:Omegatron


Let’s try to see how this applies to High-Frequency 
Oscillations! We can compute right-away some 
spectrogram of the data, and observe some signature 
of those events.

Time-Frequency Analysis
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HFO Signature

Time-Frequency Signature of sEEG data. Left: a simultaneous 
occurence of ripples and fast-ripples. Right: an artefact. 

High-Frequency Oscillations often have 
present a peculiar “island-like” 
signature in the time-frequency plane.  

A number of methods have been 
proposed to detect HFO using this 
“characterization”. Most of them were 
based on very ad-hoc schemes, with 
very specific heuristics, even though a 
precise definition was not agreed 
upon. 

We proposed a new approach to 
extract precise descriptors of candidate 
events.



Time-Frequency Analysis
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Introducing a localisation both in time and in frequency induces uncertainty. 

τ
Fourier Transform. The atoms used are 
perfectly localized in frequency, but not at all 
in time.

Gabor Decomposition. The atoms used are now 
localized both in time and in frequency, but are 
spread on the time-frequency plane.

This uncertainty (as in 
”spread of our atoms in the 
time-frequency plane”) 
cannot be avoided. See the 
Heisenberg-Gabor 
inequality: 

Δt × Δν ≥
1

4π

Uncertainty



Time-Frequency Analysis
Why have we used gaussian windows and not just small 
sections of our signal (i.e. a rectangular window) and 
performed standard spectral analysis on those segments?  

Gaussian atoms saturate the Heisenberg-Gabor inequality! 
Hence those are the ”most precise” atoms to span the time-
frequency plane! 

More windows (and procedures to construct atoms can be 
devised).

Notes on Gabor

Gabor Decomposition. Atoms 
share the same “temporal 
scale” and are only modulated 
in frequency (+ time shifted). 

Wavelet Decomposition. 
Atoms are affine dilation of a 
common oscillatory element (+ 
time shifted). 
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Time-Frequency Analysis Notes on Gabor

We can design other atoms that are 
anisotropic, and even be perfectly 
localized along a direction (but still 
not both in time and frequency).
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Time-Frequency Analysis Notes on Gabor

Also note that due to the uncertainty, such decomposition are 
highly redundant: atoms overlap. Therefore all coefficients of the 
time-frequency plane are somehow linked. Formally, we exhibit a  
reproducing kernel  such thatK

cτ,ν = ∬t,f
K(τ, ν, t, f ) ct,f dtdf

Reproducing Kernel. All coefficients in 
the time-frequency plane are linked 
together. (figure from Explorations in 
Time-Frequency, Flandrin.)

There is a strong connection between the chosen window and the 
actual kernel.
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Spectrogram Sharpening
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A common operation is to perform what is 
called spectrogram reassignment.  

The idea is to move each “mass” of the 
spectrogram toward the centroid reachable in 
the support of the reproducing kernel.

Exploiting  
Uncertainty



Spectrogram Sharpening
Said differently, having the energy distributed in the time-frequency plane following the 
reassignment field allows to recover precise structures underlying the signals (of course with 
some separability conditions, etc).

If we study this field more in detail, we observe a 
precise role of both zeros and maxima of the 
spectrogram: maxima are attractors of the field, 
while zeros are repellers.

Renseignement Field. Figure from 
Explorations in Time-Frequency, 
Flandrin.
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Exploiting  
Uncertainty



Spectrogram Zeros
There is an even stronger result that emphasizes the role of zeros in the structure of the 
spectrogram. If we see the time-frequency plane as the complex plane (denoting 

), we have thatz = τ + iν

c(z) = f(z)∏
n

(1 −
z
zn ) exp ( z

zn
+

1
2 ( z

zn )
2

)
This result (a Weierstrass-Hadamard factorization) allows to express the value of the 
spectrogram at any  point using only the positions of the zeros ( ). 

 The zeros are thus a sparse descriptor which fully characterizes the spectrogram!

(τ, ν) zn
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Sparse Description 
Of Spectrograms



Zeros and Noise
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Spectrogram of White Noise. Zeros are represented 
in white while dark values represent high energy sites.

Probabilistic Analysis. Spectrograms 
of white noise might be seen as 

realizations of a “mean” model which 
consist in a “crystallographic”-like 

packing of gaussian atoms. 


Figures from Explorations in Time-
Frequency, Flandrin

Reassigned Spectrogram of White 
Noise. Voronoi-diagram like structure 

are exhibited when following the 
reassignement field. The zeros are 
represented as the white circles.

The Remarkable Structure  
Behind Random Noise



Zeros and Noise
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Reassigned Spectrogram of white Gaussian noise. The 
Voronoi tessellation of the zeros loci is represented on top of 
the reassigned spectrogram.

Delaunay Triangulation. The Delaunay triangulation is a dual 
structure of the Voronoi tessellation. The Delaunay triangulation 
of packed logons is expected to be composed of quasi-
equilateral triangles.Figures from Flandrin.



Application to HFO
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Application to HFO
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Application to HFO
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Twist in the initial approach where we looked at the energy: now the signal of interest is 
defined as what lies between the absence of energy (i.e. the “silence”!)

An Algorithm to extract candidate HFO signature. 
1. Select candidate events timepoints  by filtering in the relevant band

2. For each event 


1. Compute the spectrogram of the signal around 

2. Extract the positions of the zeros  in this spectrogram

3. Compute the Delaunay triangulation of those 

4. Keep only the triangles having one length greater than 1% of all the lengths 

in the triangulation

5. Compute the connected components of the remaining triangles

6. Remove those that do not overlap 

(ti)
τ ∈ (ti)

τ
(zn)

(zn)

t = τ



Application to HFO
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HFO detected by our method. Those examples are events which were marked as HFO and that 
were correctly detected using our method. The sparse geometric description of the events allows 
to extract relevant features.



Application to HFO
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Statistic Analysis of HFO. This method allows to very 
easily construct quantitative statistics describing the 
geometric signature of those events. Here for instance 
is the distribution of the “areas” of the signatures of 
the events that were qualified as HFO. 



Application to HFO
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False Positives. Those examples are events for which energy was observed in the frequency 
band of interest, even though they were not qualified as HFO. Extracting geometric features using 
our method allowed to very easily reject them based on the area criteria. 



Conclusion

28

Results were promising but could have used a bit more evaluation 
(actually computing performance metrics, test on a broader ranger of 
data, etc). 

Our method was a non-parametric and almost prior-free way to extract 
relevant features describing the geometry of HFO in spectrograms.  

Such method is even generalizable to many contexts and tasks.

Flandrin, P. (2018). Explorations in Time-Frequency 
Analysis. Cambridge: Cambridge University Press. 

doi:10.1017/9781108363181



Example of Other Domain of Application
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Zero-based filtering of the GW150914 
event (gravitational waves)  


